COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF HUMAN SERVICES, INSURANCE & AGING
INFORMATION TECHNOLOGY Guideline
	Name Of Guideline:
	Number:

	Team Foundation Server Source Control
	GDL-EASS008

	Domain:
	Category:

	Application
	Source Code and Version Control

	Date Issued:
	Issued By:

	07/31/2009
	DHS Bureau of Information Systems

	Date Revised:
	

	09/30/15
	

General:
For any project, all the source code and necessary project related document should be in a source control system. Microsoft Team Foundation Server is the source control system for DHS projects. Team Foundation Server (commonly abbreviated TFS) is a Microsoft product offering source control, data collection, reporting, and project tracking, and is intended for collaborative software development projects. The Source control repository provided by TFS is called Team Foundation Version Control (TFVC). This document provides guidelines for organizing the TFVC structure for a software development project to support effective team software development and version control.
Guideline:

Structure for the Project and Solution in Team Foundation Source Control
DHS has selected the Single Solution structure for our project files, which means we maintain one collection and our projects are all contained in this one collection.
Folder Structure

Many of the default folder conventions used by Visual Studio when creating new solutions and projects are not optimized for team development and for use with TFS source control. Rather than accepting the default folders a new Visual Studio project creates, you should give careful consideration to your folder structure.

Structure shown in this document should be used by project teams in TFS source control for effective team development. Use a root-level folder called Main to group together your Visual Studio projects. The Main folder should contain child folders to store various project assets such as source code, tests, documents, and team build types.
Use SharePoint for internal team documents such as use cases and design documentation. Use TFS source control for product-related documentation that are part of the final product, the help document is a good example.
Keep the server-side and client-side folder structures synchronized in order to reduce confusion caused by differences in folder organization. To optimize your approach for very large projects, create workspace mappings below the root to ensure that you only retrieve the files you need for development.

Server-Side Structure
Most team projects contain one or more Visual Studio solutions, each of which contains one or more Visual Studio projects. When you require branching to support isolated development paths, you use a root level folder named Main (on both client and server) to group together your Visual Studio projects. The following is a sample folder structure within TFS source control:
	[image: image1.png]5§ PROJECT 1
& PROJECT2
&y PROJECT2
£ Development
2 Main
&3 AppRoot
£ Buidscripts
8 Common
8 Docs.
£ EnvironmentSpecifcations
28 OneTimeCode
2+ Source
8 Batches
8 Database
£ InspectionClient
£ OnlineHelp
28 ProviderClearanceCOM
£ Reports
8 Rules.
8 Services
28 SharedBin
28 SharedSource.
8 SmartClient
£ Templates
£3 WebApplications

£ Tests
& TeamBuildTypes

S Relesse
i Retesse 100

£ AppRoct

£ BuildScripts

£ Common

2 Docs

£ EnvironmentSpecifications

£ OneTimeCode

£ Source

& Tests

£ pRoJECT 2 Servies
G PrOJECTS
Gh pROJECTS
Gh PROJECTS

 Figure 1.1
	The figure 1.1 on the left shows a team project. The Development folder can be used for ongoing development. The Main folder contains all the code related to the team project, documentation, environment specific information, test cases etc.

The Main folder should have the sub folders as shown in the figure even if there are no contents in those folders. The Source folder should have all the source code related to database, reports, batch programs etc. in their specific folders as shown in the figure. The WebApplications sub folder should contain all the web projects for the Team project in their own specific folders.

The Tests and TeamBuildTypes folders should be at the same level as the Source folder (see next section for more details).

A Release folder at the same level as the Main folder should house all the releases for the team project.
The Database folder should be used for all database related files. This enables the database group to easily find files they need to move or implement. A DataWarehouse folder may also be necessary for files related to the Data Warehouse and should be created at the same level at the Database folder.

The Docs and Test folders are used to hold additional artifacts associated with the team project including product documentation and automated tests.

The TeamBuildTypes folder is automatically created for you when you generate your first Team Build. If you want to manually check in a team build type you can create this folder by hand, add your Team Build files, and TFS recognizes this folder for you automatically.

Storing Unit Tests

You can store unit tests beneath a folder named Tests at the same level as Source, as shown below in Figure 1.2.

[image: image2.jpg]-0 source
TeamBuidTypes
B Tests

- Wy Project 1
£l Release

 Figure 1.2

This scenario treats unit tests as first-class citizens. However, it does so at the expense of project level branching compatibility. There are some benefits to it:
· You can find unit tests in one place.

· You separate shipping code from non-shipping code.

· Your build process can easily run all unit tests across all projects.

Storing Documents

The Docs folder is for product related documentation. To help determine what documents to store in TFS source control and what to store in a document library on your Microsoft Windows SharePoint team site, consider the following:

· Use SharePoint for internal team documents such as use cases, scenario and requirements documentation, and design documentation.

· Use TFS source control for project-related documentation. This could include installation and deployment guides, operations guides, and Help files.

Most documents are binary files, so consider using exclusive locks to avoid manual merges. By doing so, you get notified when a file is in use and you help avoid having to perform manual merges.
Use caution when using SharePoint because strict management of document versions is required. It is easier to overwrite changes in SharePoint compared to TFS source control. By default, SharePoint enables the “overwrite existing file” option selected when files are uploaded.
Client-Side Structure

The local folder structure on your development workstations should be identical to the server folder structure. Keep source artifacts well organized on your workstations by placing all source objects from all team projects together beneath a single root folder, such as C:\Projects. Create one sub-folder for each team project

Note: The client-side structure automatically mirrors the server-side structure if you create a workspace mapping from the application root to your local computer. However, in very large projects this can result in slow workspace load times. To optimize your approach for very large projects, create workspace mappings below the root to only retrieve the files you need for development.

Branched Folders

To support development isolation with branches, create additional folders as siblings of Main. You can also place additional Visual Studio solution (.sln) files in Main to enable developers to work with various groupings of projects. Branches created from the Main source folders can be used to support ongoing maintenance of product releases or parallel streams of development.
In the folder structure, in addition to the Main root folder, a Development folder (branched from Main) is used to provide isolation for features or for teams. A Releases folder, which is a container for release branches (again branched from Main), provides isolation for released builds that require ongoing maintenance and current release lockdown.

Note: Do not branch unless you need to. If required, you can label a release and branch at a later time.

What Files Should Be Version Controlled?

The following list identifies the key file types that you should add to source control. These are the file types that are added when you click Add Solution to Source Control.
· Solution files (*.sln). Solution files maintain a list of constituent projects, dependencies information; build configuration details, and source control provider details.

· Project files (*.csproj or *.vbproj). Project files include assembly build settings, referenced assemblies (by name and path), and a file inventory.

· Visual Studio Source Control Project Metadata (*.vspscc). These files maintain project bindings, exclusion lists, source control provider names and other source control metadata.

· Application configuration files (*.config). Extensible Markup Language (XML) configuration files contain project and application specific details used to control your application’s run-time behavior. Web applications use files named Web.config. Non-Web applications use files named App.config.
Note: At run time, the Visual Studio build system copies App.config to your project’s Bin folder and renames it as <YourAppName>.exe.config. For non-web applications, a configuration file is not automatically added to a new project. If you require one, add it manually. Make sure you name it App.config and locate it within the project folder.
· Source files (*.aspx, *.asmx, *.cs, *.vb, …). These are source code files, depending on application type and language.
· Binary dependencies (*.dll). If your project relies on binary dependencies such as third–party dynamic-link libraries (DLLs), you should also add these to your project within source control. You can add such files to the SharedBin sub-folder under Source folder.
What Files Should Not Be Version Controlled?

The following files are specific to each developer and therefore should not be added to version control:
· Solution user option files (*.suo). These contain personalized customizations made to the Visual Studio IDE by an individual developer.

· Project user option files (*.csproj.user or *.vbproj.user). These files contain developer specific project options and an optional reference path that is used by Visual Studio to locate referenced assemblies.

· WebInfo files (*.csproj.webinfo or *.vbproj.webinfo). This file keeps track of a project’s virtual root location. This is not added to source control, to allow individual developers to specify different virtual roots for their own working copy of the project. While this capability exists, it is recommended that all team members use a consistent (local) virtual root location when developing Web applications.
· Build outputs. These include assembly DLLs, interop assembly DLLs and executable files (EXEs). (However, note that assemblies such as third-party binaries that are not built as part

Branching Considerations

Branches are usually created to lock down a release, to maintain a previous release, or to support isolated parallel development. You should not branch unless you have good reason to do so.

When branching, consider the following:

· Do not branch unless your development team needs to work on the same set of files concurrently. If you are unsure about this, you can label a build and create a branch from that build at a later point. Merging branches can be time consuming and complex, especially if there are significant changes between them.
· Structure your branch trees so that you only need to merge along the hierarchy (up and down the branch tree) rather than across the hierarchy. Branching across the hierarchy requires you to use a baseless merge, which requires more manual conflict resolution.

· The branch hierarchy is based on the branch parent and branch child, which may be different than the physical structure of the source code on disk. When planning your merges, keep in mind the logical branch structure rather than the physical structure on disk.
· Do not branch too deeply. Because it takes time to execute each merge and resolve conflicts, a deep branching structure can mean that changes in a child branch may take a very long time to propagate to the main branch. This can negatively impact project schedules and increase the time to fix bugs.
· Branch at a high-level and include configuration and source files.
· Evolve your branching structure over time.
· Merging requires one or more developers to execute the merge and resolve conflicts. The merged source must be thoroughly tested because it is not uncommon to make bad merge decisions that can destabilize the build.
· Merging across the branch hierarchy is especially difficult and requires you to manually handle many conflicts that could otherwise be handled automatically.

· The decision to create a branch can be reduced to: Whether the cost of merging conflicts in real time is higher than the overhead cost of merging conflicts between branches.
Process Template:

Visual Studio Team System (VSTS) and TFS provide an integrated environment that supports most of the process activities involved in a software-development project. TFS implements its life-cycle methodologies through the use of process templates. A process template is a set of Extensible Markup Language (XML) files that provides specifications for processes and artifacts that make up a development methodology.

Internal projects for DHS will use a customized Agile process template while enterprise projects will use a customized CMMI process template.
Security and Permissions

When you create a project in TFS, four default groups are created for that project, regardless of your choice of process template. By default, each of these groups has a set of permissions defined for it that govern what members of those groups are authorized to do:
· Project Administrator

· Contributor

· Reader

· Build Services

At BIS, Security is maintained using Active directory groups. For each project, three Active Directory groups should be created and then assigned specific roles. Users will be added to or removed from the Active directory groups.

For a project named MyProject, the following groups will be created:
· PW-TFS-MyProject ProjectAdmins

· PW-TFS-MyProject Contributors

· PW-TFS-MyProject BuildServices
Creating a security group is an efficient way to grant a specific set of permissions to a group of users on your team project. Make sure that you add only those users or groups who must belong to this new team project group.
Note: Projects created under the Internal_Apps branch of TFS will not need new groups created in Active directory. Access to these projects is controlled by the following groups:

· PW-TFS-Internal_Apps ProjectAdmins

· PW-TFS-Internal_Apps Contributors

· PW-TFS-Internal_Apps Build Services

Note: A PW-TFS- Read Access group already exists, and all the users will be added to this group by default, to provide them read only access to all the projects.
Refresh Schedule:
All guidelines and referenced documentation identified in this guideline will be subject to review and possible revision annually or upon request by the DHS Information Technology Standards Team.
Guideline Revision Log:

	Change Date
	Version
	Change Description
	Author and Organization

	07/31/2009
	1.0
	Initial creation
	Sandeep Chaudhary (CAI)

	04/25/2012
	1.1
	Updating to reflect latest technology
	Laura Fry (DPW)

	10/11/2013
	1.2
	Updated process template and security sections
	Matthew Baker (DPW)

	9/30/15
	1.3
	Name change from DPW to DHS
	Virjean Dauksha

Team Foundation Source Control Guidelines

Page 10 of 10

