<Project Plan> - SDM TEST PLAN
PAGE
<Project Plan> - SDM Test Plan

Last Update: <Insert Date>

[image: image1.jpg]Py pennsylvania

DEPARTMENT OF HUMAN SERVICES

03/10/2016
Executive Summary

Objective

<The objective of this document is to define the test plan of the <Project Name> for Phase/Release <#. #>>

Overview

<Please include a brief overview of the testing phases here.>

The Table below defines the various test phases and who is responsible for their execution. <If any of the following test phases are not applicable, or if any additional test phases are planned, please update the table accordingly.>

Table 1: Test Phases

	Phase
	Responsible Person(s)
	Description

	Unit Test
	Developers
	Tests an individual module in an isolated environment.

	Integration Test
	Developers / Track Lead
	Tests integrated modules within a subsystem or functional area and integrated modules among subsystems or functional areas.

	System/ Performance Test
	Performance Test Team
	Tests production hardware and software configuration performance. Tests the overall system independent of user involvement. The emphasis is on correct functionality of the overall system.

	Acceptance Test
	Acceptance Test Team
	Tests integrated modules among subsystems or functional areas. Acceptance test is similar to system test in both form and function, but it introduces users to the testing process and ends with their approval on the correct functionality. Its emphasis is on meeting requirements, the user interface, correct functionality, and utility from the end users’ perspective. It is complete when the project sponsor agrees to proceed with production implementation.

The following chart highlights the steps that will be completed as part of each testing phase.

<Please add any additional charts to highlight the various steps in other testing phases.>

Testing Steps

[image: image2]
Testing Scope

<Describe the scope of testing here – i.e., what testing will verify/validate, and how.>

Unit Test Plan

Definition

<Unit testing is the process of testing an individual, low-level program in an isolated environment before testing its integration with other units. Unit testing verifies the code object matches the technical design, properly handles the data and the available paths through the software execute reliably. This testing is typically performed on the developers’ workstations, and then repeated on the server-based development environment. Limited interfacing of components is likely to occur in this phase by a developer.>

Objective

<The purpose of unit testing is to find code defects in functions or in a unit of work. Unit testing is the most efficient, effective, and inexpensive phase in terms of defect detection.>

Depth of Testing

<Unit test plans should cover the technical details of the program. Expected results focus on internal code and the inputs and the outputs from the code. In-depth, high-quality unit testing will shorten future testing phases by reducing the defect rate.>

Approach

<The unit test technical approach is to validate the following: internal logic, error handling, field processing, computations/calculations, data handling/access, range of possible inputs/outputs, and cross-field edits. Using the application documentation as a guide, the developer moves through the code he/she has written and ensures all the requirements and the coding standards have been met. Best practices provide that the developer will engage peers to review his/her code.>
Roles and Responsibilities

<Complete the following table for the roles and responsibilities for this testing phase.>

	Testing Activities & Environment
	Date
	Resources Required
	Delivery Responsibilities

	Create / Update Scenarios
	
	· Functional Team Lead
	Products:

· Test Scenarios

Responsibilities:

· The functional team will develop the integration test scenarios prior to beginning the design of integration test. Business Logic Descriptions and unit test cases will be used as a starting point

	Create Test Data
	
	· Functional Team
	·

	
	
	·
	·

	
	
	·
	·

Test Data

<List all required test data here to be used in Unit Test.>

Entry Criteria

<List or reference the baselined program specifications, development standards, and other source documentation that will be the entry criteria for Unit Testing.>

· Peer Review complete

· Adherence to specifications verified
· Walkthrough with the design analyst/project manager complete
QA/Exit Criteria

<Describe the QA/Exit Criteria of Unit Testing here.>

· Adherence to coding standards verified

· Updates to specifications made based upon discovery are required and complete
· Completed module checked into Microsoft (MS) SourceSafe or maintained in the Project Folder

· Preliminary interface testing complete, documented, and maintained in the project folder

· Readiness assessment complete
Unit Test Activities

· Developer self-review - The developer must ensure his/her code is functional before requesting any type of testing. The objective is to reduce the amount of time spent on corrections later in the process.

· Create Unit Test Checklist – based on the items being tested as well as the test scenarios, the Developer works with the project manager/track lead to create the Unit Test Checklist

· Revise and approve Unit Test Checklist – the project manager/track lead then revises and approves the new version of the Unit Test Checklist

· Perform Unit Test of developed code

· Perform check against coding standards
· Perform check against best practices

· <Add any additional Unit Test activities here.>

Unit Test Goals – To verify adherence to:
· Business requirements

· Screen standards

· Code standards

· Graphic design standards

· File naming conventions

· Best practices (e.g., reusability, efficiency)

· Project standards (adherence to nomenclature and interfaces)
· <Add any additional Unit Test goals here.>

System & Integration Test Plan

Definition

<System testing is a comprehensive, end-to-end test of the integration of subsystems and interfaces. System test scenarios model valid business activities. Typically, load testing, stress testing, and regression testing can also be incorporated in this plan. Testing tools where relevant can be included. Tests should be documented and maintained in the Project Folder so they can be repeated in future iterations or prior to future releases. Add any further definition here.>

Objective

<System testing ensures that subsystems and interfaces function and interact according to design. The purpose of integration testing is to verify proper coordinated functioning of the modules that make up a sub-system. The focus of integration testing is on cross-functional tests rather than on unit tests within one module.>

Depth of Testing

<This should be prioritized by functionality with more time and resources being invested in critical areas. During system testing, proper end-to-end functionality needs to be tested and validated. In addition to testing for proper functioning under normal conditions, testing will also emphasize responses to bad data, out-of-bounds input, and other abnormal conditions.>

Approach

<The approach to system testing should model the actual usage of the application in production. Valid business processes, including inputs and outputs, are executed and validated. Online and batch activities occur as of a simulated date and time to allow for testing of date/time driven logic. End-to-end testing needs to be performed to verify the system will function according to requirements. Environment management is a significant portion of the system test effort. Managing backups, restores, configuration data migration, build deployments, build shakedowns, etc., and must be factored into the effort. Integration testing focuses on the valid interactions of units or driven flow that must execute successfully to satisfy a business process. This includes but is not limited to: window navigation within a subsystem, data passage within a subsystem, error handling, security and controls, interfaces and data transfer, and outputs (reports, forms, and correspondence). This phase includes both positive and negative testing. In addition, it includes unit test criteria; as well as, criteria that cannot be tested within an independent unit. It should show that unit components tested now interact correctly according to the design. Again, the approach may vary for online, batch, package, Internet, etc., modules. Alternate test approaches; including queries, database validation, etc., may need to be incorporated.>

Roles and Responsibilities

<Complete the following table for the roles and responsibilities for this testing phase.>

	Testing Activities & Environment
	Date
	Resources Required
	Delivery Responsibilities

	
	
	·
	·

	
	
	·
	·

	
	
	·
	·

	
	
	·
	·

Test Data

<List all required test data here to be used in System & Integration Test.>

Entry Criteria

<Describe program specifications/development standards or other items that will be the entry criteria for System Testing.>

· Unit Test documentation

· <Add any additional entry criteria here.>

QA/Exit Criteria

<Describe the QA/Exit Criteria of System & Integration Testing here.>
· Completed test plan documentation

· Updated unit, integration, and system test plans based upon discovery

System & Integration Test Activities

· Developer self-review - The Developer must ensure that his/her code is functional before requesting any type of testing. The majority of this self-review will happen while the Developer is coding the objects. However, it is recommended the Developer take time to verify the validity of his/her code before moving it along in the testing process to reduce the amount of time spent on corrections and project Change Requests (CR) later in the process.
· Perform Integration Tests of the developed code

· Update application specifications, unit, integration system test plans based upon discovery
· Testing for Functionality - Functionality testing deals with the business requirements of the application. During this sub-phase, the tester is performing scenarios that attempt to discover problems in the operation of the application. Problems found here are typically the most serious, because they directly affect the ability of the application to meet the demands of the client.

· Test for JavaScript Reliance - The application will make heavy use of JavaScript to validate form data and handle some light processes (such as displaying the current date.) However, because the client platform will not be standardized, the possibility exists that the user will not have JavaScript enabled. The application must perform adequately when this situation occurs. Therefore, it is essential that scenarios be developed to traverse the application with JavaScript disabled.

This testing must occur after Functionality Testing to gather a baseline of correct behavior and output when JavaScript is enabled.

· Test for Browser Compatibility - The Web-based Worker Interface will support multiple browsers. Therefore, it is imperative that the application works the same (within reason) regardless of browser or version. This testing is done after functionality has been proven so that a baseline of correct operation is available. The current approved version of Microsoft Internet Explorer will be used as the baseline

Test for Accessibility - The developed site must conform to accessibility guidelines.
· <Add any additional System and Integration Test activities here.>

System & Integration Test Goals – To verify adherence to:
· Business requirements

· Screen standards

· Code standards

· Graphic design standards

· File naming conventions

· Best practices
· System and module standards, e.g., Section 508 compliance, thematic requirements and documentation requirements

· <Add any other planned System & Integration Test activities here.>

Load Test Plan

Definition

<Load testing observes production hardware and software configuration performance under a predetermined set of test scenarios to confirm that the system, as built and deployed, can maintain adequate throughput, satisfactory response, and timely operation under different stress and volume conditions as are likely to occur in production. This is normally part of system testing.>
Objective

<The purpose of Load Testing is to determine whether, or at what point, extreme conditions are likely to cause system failure.>
Depth of Testing

<This should be prioritized by functionality with more time and resources being invested in critical areas. Testing should include scenarios simulating maximum hardware and software usage that are likely to occur infrequently over the life of the application, (e.g., before or after holidays, during weekends, at months end, at quarters end, or at years-end processing).>
Approach

<The approach should focus on validating the performances and stress with the operations and business processes that users employ daily.>

Roles and Responsibilities

<Complete the following table for the roles and responsibilities for this testing phase.>

	Testing Activities & Environment
	Date
	Resources Required
	Delivery Responsibilities

	
	
	·
	·

	
	
	·
	·

	
	
	·
	·

	
	
	·
	·

Test Data

<List all required test data here to be used in Load Test.>

Entry Criteria

<List any program specifications/development standards, scenarios, or other items that will be the entry criteria for Load Testing.>

QA/Exit Criteria

<Describe the QA/Exit Criteria of Load Testing here.>
· Statement of Results

· Deficiencies in testing

· Updated Detailed design, Program Specifications, and test plans based upon discovery
User Acceptance Test Plan

Definition

<User Acceptance Testing is similar to the system test in both form and function. However, User Acceptance Testing introduces users into the process. UAT should be performed last to ensure that the final version of the application meets all of the guidelines.>

Objective

<The purpose of User Acceptance Testing (UAT) is to validate that the system is usable and to gain client ‘sign-off’.>

Depth of Testing

<This should be prioritized by functionality with more time and resources being invested in critical areas. In addition to testing for proper functioning under normal conditions, testing will also emphasize responses to bad data, out-of-bounds input, and other unusual conditions.>

Approach

<The approach focus on validating the system interaction with the operations and business processes users employ daily and to verify that the requirements are met.>

Roles and Responsibilities

<Complete the following table for the roles and responsibilities for this testing phase.>

	Testing Activities & Environment
	Date
	Resources Required
	Delivery Responsibilities

	
	
	·
	·

	
	
	·
	·

	
	
	·
	·

	
	
	·
	·

Test Data

<List all required test data here to be used in User Acceptance Test.>

Entry Criteria

<List any program specifications/development standards, predefined scenarios, or other items that will be the entry criteria for User Acceptance Testing.>

QA/Exit Criteria

<Describe the QA/Exit Criteria of User Acceptance Testing here.>
· Updated User Acceptance Test Plan
User Acceptance Testing Activities (UAT)

Examples of UAT activities include:

· Execute tests to prove functionality
· Execute tests based upon the user case scenarios

· Document and resolve improper functionality

· <Add any additional activity here>

User Acceptance Goals – To verify adherence to:

· Business requirements and expected functionality
· Interface requirements
Defect Management Process

<Provide details as to how defect management should be carried out. This includes how defects are to be tracked, who the contacts are, which developers are assigned, the turnaround time for re-testing, and the approval process for corrections. Also, the refactoring (or the updating and correction of a process and its documentation) process can be addressed here as defects often result in the discovery of deficiencies in the project documentation. This is also commonly referred to as the problem reporting and resolution process.>
Appendix A – Testing Calendar

The calendar on the next page, illustrates the timing of the tasks for both system integration and acceptance testing.

Currently used abbreviations include:

	Abbreviation
	Meaning
	Functional Team Lead

	DEV
	Development
	

	INTG
	System Integration Testing
	

	SAT
	System Acceptance Testing
	

	UAT
	User Acceptance Testing
	

	USR
	User Administration
	

	TFP
	Test for Production
	

	TRN
	Training
	

All Integration Testing will take place at the following location:

· <Include address where Integration Testing will take place.>
All System Acceptance Testing will take place at the following location:

· <Include address where Acceptance Testing will take place.>

<Insert the calendar here. The calendar is to show the testing events, team leads and contacts, and the date and time for each event.>
An Example of a Testing Calendar

	Sun
	Mon
	Tue
	Wed
	Thu
	Fri
	Sat

	
	
	
	
	1
	2
Unit Testing in Progress
	3

	4
	5
	6

INTG
	7
	8
	9
	10

	11
	12
	13
	14
	15
	16
	17

	18
	19
	20
	21
	22
SAT
	23
	24

	25
	26
	27
	28
	29
	30
	

Identify Test Conditions

Determine appropriate coverage

Develop Test Scenario Objectives

Prioritize Test Scenarios

Preparation

Scenario

Development

Develop Test Cycles

Detail Test Scenarios, Scripts, Results

Identify Test Data

Execute Test Scenarios

Log, Prioritize, Resolve Problems

Provide Readiness

Assessment

Test Execution

Manage Environment

Sept.

PAGE
Page 4 of 17
SDM Test Plan Template

