
MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 1 of 37

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT’S OF HUMAN SERVICES,

INSURANCE, AND AGING

INFORMATION TECHNOLOGY STANDARD

Name Of Standard: MS SQL Server Number:
2012 / 2014 Naming and Coding

Standard
STD-DMS009

Domain: Category:
Data

Date Issued: Issued By Direction Of:

Date Revised:
9/15/2016 Clifton Van Scyoc, Dir of Division of Technical

Engineering

Abstract:
The purpose of this document is to detail and give examples of Microsoft Structured Query
Language (MS SQL) development standards followed at the Departments of Human Services
(DHS), Insurance (PID) and Aging (PDA).
General:
Coding standards are conventions and methods developers follow when developing, editing or
maintaining program code. Better programming style, developer understanding, readability and
reduced application development time are the results of following coding standards.

Database Modeling Environment

Computer Associates (CA) ERwin Data Modeler is the standard tool for designing and
modeling SQL Server 2008/2012/2014 databases.

All models are reviewed by the Database Management Section.

All completed models are stored in the Microsoft Visual Studio Team Foundation Server.

Database Data Definition Environment

Microsoft SQL Server Management Studio is the standard tool to use for the execution and
modification of Data Definition Language (DDL) for the development of SQL Server
2008/2012/2014 databases. The general process is:

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 2 of 37

1. Initially generate a DDL from ERwin using forward engineering, or if required, create
DDL statements manually within SQL Server Management Studio.

2. Execute the DDL within SQL Server Management Studio and, if necessary, edit
and/or tune the statements using the Management Studio environment.

3. Reverse engineer the database back into ERwin to keep the database and data
model synchronized.

Store revised data models and all DDL scripts in Microsoft Visual Studio Team Foundation
Server. Store the DDL scripts in a consistent manner under the project folder in Team
Foundation Server.

Database Programming Environment
Use SQL Server 2008/2012/2014 Management Studio to code and test stored procedures and
triggers.
Prototype every process using Transact-SQL (T-SQL) within SQL Server Management Studio
prior to creating a new stored procedure, view, function or trigger. This results in ease of
debugging.
Use Execution Plans
 Estimated Execution plans need to be used while developing T-SQL.
 Actual Execution plans need to be included in the migration packet.
Use Database Engine Tuning Advisor

SQL Server DBA’s and analysts use this tool to determine if additional keys or indexes
may be required. Creation of the additional objects are determined and executed by
database administrators and analysts.

General Import/Export File Rules
All files imported to and exported from SQL Server 2008/2012/2014 preferred delimited.
Although commas, hyphens, semicolons and other characters can be used to delimit files,
only a vertical bar (| or ‘pipe’) is allowed, no exceptions. Using other characters introduces
the possibility of that character being embedded as valid data within a text or large variable
character column. A vertical bar is less likely to be valid data.

Commenting Guidelines
These rules apply in general to all source files.

Object Header Usage
Include object headers in every source code file.

Object Maintenance Documentation

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 3 of 37

Include object maintenance documentation in every source code file. Keep this
documentation current on all revisions after moving any given source file into production.
Before initial migration into production, revision information is not required.

Comment Quality
Comments must contain a description of the process the SQL module (source file),
procedure, or trigger accomplishes. Write the description in clear, concise, non-colloquial
English, using business terms to describe the processes.

Do not use comments such as:

--
-- Declare the Customer Name Variable
--
DECLARE @CustomerName AS VARCHAR(32)

Describe the purpose of the process and how it works, in non-technical terms. This is
important because most developers can read the SQL and see line-by-line what it does
mechanically, but may not be able to easily grasp the purpose (business logic) behind the
code. Write comments to aid the reader of the code. Assume that the reader is not well
versed in Transact-SQL and try always to describe the “how” and “why” of the process
clearly.
Comment Quantity
More comments are better than using fewer comments. Remember that the code is reviewed first,
then, over time (perhaps after many years), require revisions and enhancements. Providing
adequate comments allows the database administrator, developer, and the developer’s peers to
quickly understand the logic and perform necessary revisions, and so forth.

Standard Object Header
Every object contains an object header. An object header contains the database name, object
name, creation date, author, a brief description of the object, parameters passed, returns,
calling mechanism, tables and aliases used in code, other procedures called, DPSR #, notes,
and any special comments and warnings. Module headers remain open on the right-hand side.
Documentation for Object Maintenance
This section describes how to document changes in the Transact-SQL source code. The
method involves using a maintenance documentation heading and comments within the
source code. A common developer signature provides these together.

Object Maintenance Documentation
Immediately following the object header there is a skeletal maintenance block. Use this
skeletal block as a template for maintenance done to the object code. Copy, paste, and fill
in this block when you alter the object code. The block copy marks are on the lines with the
equal signs. Include the lines with the block copy marks.

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 4 of 37

Make the insertion of the copied block directly after the skeleton block. Thus, the history is
recorded from earliest to latest.

Example of OBJECT HEADER AND MAINTENANCE DOCUMENTATION

/**
* DATABASE: OMAPINTERNET
* PROCEDURE NAME: usp_SelectAllResults
* DATE: 04/03/2009
* AUTHOR: Homer Simpson
* PROCEDURE DESC: This proc returns all the results for a specific NDC,
* ShortName or market basket code or their combination
* WorkOrder# 13798
**
* DATE: Developer Change
---------- ---------------- --
 08/01/2013 Joe Developer Add Indicator

**/

Minor Line-level Commenting
Do not put comments on the same line as the code. Examples of this illegal style follow:

DECLARE @IsNew AS Integer -– Is New Flag
DECLARE @Firstname AS VARCHAR(32) -- First Name Field

Insert all comments for a particular section of code before the code block, with one blank
comment line before and after the comment. An example follows:

--
-- Declare the local working variables
--
DECLARE @IsNew AS Integer
DECLARE @Firstname AS VARCHAR(32)

--
-- Return identity value.
--
SET @IDENTITY_CONTACT = CAST(SCOPE_IDENTITY() AS INT)

 SELECT @IDENTITY_CONTACT

Formatting Guidelines

Font Style, Size, and Capitalization

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 5 of 37

Font Style and Size
Write all SQL code in 10 point Courier New font.

Capitalization
Please make sure that Transact-SQL keywords are opposite case from variables, field
names, and object names when coding SQL statements,.

Tab Stops
Set tabs to either four spaces or eight spaces (default).

Line Length
Do not write a Transact-SQL line that exceeds 132 characters in length, unless there is no
other way to properly format the source.

Line Count—needs moved to store proc section.
Do not write procedures that exceed four pages in length excluding comments, headers,
and maintenance log, without written justification to the data base administrators.
Exceptions to rule are procedures used in conversion or loads of data. Code exceeding
this limit should be looked at closer and possibly split into smaller stored procedures or
modularized.

Star “*” Usage
Do not use the star symbol “*” in a Transact-SQL statement, as this is very inefficient.
This is prohibited .In all instances, include the appropriate fields in the statements where
needed. An example of the wrong way to write a Transact-SQL statement follows:

SELECT *
FROM T_VENDOR

If you must return a count, select one field in the table or use 1. Example below.
Select count (1)
from T_VENDOR

Examples of the right way to write a Transact-SQL statement follows. Specify each field as in
the examples:

SELECT Field1,

 Field2,
 Field3,

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 6 of 37

 Field4
FROM TABLE_A
WHERE nbr_vt = @nbr_vt_recent
SELECT PMT.IDN_APPLN_PMT,

 PMT.AMT_BNFT
FROM T_APPLN_PMT PMT

INNER JOIN T_VOU_TRNSMTL VT

 ON VT.IDN_TRNSMTL_VOU = PMT.IDN_TRNSMTL_VOU

Compound Statements
Compound statements are those that are encased within a BEGIN…END structure.
Formatting rules for this structure are as follows:

1. The BEGIN statement aligns directly under the statement above.
2. The END statement is aligned in the same position as its corresponding BEGIN

statement.
3. Within the BEGIN…END structure, statements are indented and should be in

alignment.

IF…ELSE Statement Blocking
Treat all “IF” statements (and block “ifs”) as if they were compound statements using the
BEGIN…END structure. No exceptions are permitted.
An example follows:

IF @@ROWCOUNT < 1
BEGIN

 RETURN -1
END

ELSE
BEGIN

 SELECT @RowReturned = @@ROWCOUNT
 RETURN 0

END

Multi-line Parameter Style
When you must expand a statement to more than one line (because it exceeds the 80-
character line limit standard), use the style in the following example, for consistent
readability. It is best to apply this style even when you do not exceed the 80-character limit
(though this rule is not strictly enforced).

EXECUTE usp_MyStoredProcedure

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 7 of 37

 @MyParameter1,
 @MyParameter2,
 @MyParameter3 OUTPUT,
 @MyParameter4 OUTPUT

Indenting and Formatting SQL Statements
The styling presented in this standard provides for a more consistent look to all stored
procedures and triggers. The guidelines presented here (by example) apply to all Transact-
SQL statements. Use of white space is highly recommended.

Example of Select Statement

SELECT DISTINCT t1.nbr_rcpt,
 t2.nam_rcpt

FROM T_TABLE1 t1,
 T_TABLE2 t2

WHERE t1.nbr_value = t2.nbr_value
 AND t1.cde_value = @ParmKeyVal
 AND (t1.nbr_value < 1 OR t1.nbr_value > 99)

ORDER BY t2.nam_rcpt DESC

From the example, it can be seen that:

1. Individual elements are placed in separate lines
2. Elements are indented one tab stop
3. Keywords are to the left whenever possible
4. If the length of the keyword or keywords (ex: “SELECT DISTINCT” and “ORDER

BY”) equals or exceeds the tab stop setting (8), the parameter is placed on the
subsequent line at the proper indent position

5. Parentheses are used to distinguish logical blocks and are indented at the same level as
any other parameter.

Other examples follow:
Example of Select Statement:

SELECT DISTINCT t1.nbr_rcpt,
 t2.nam_rcpt

FROM T_TABLE1 t1,T_TABLE2 t2

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 8 of 37

WHERE t1.cde_value = t2.cde_value

 AND t1.nbr_rcpt = @ParmKeyVal
 AND (t1.cde_value < 1 OR t1.cde_value > 99)

ORDER BY t2.nam_rcpt DESC

Examples of Insert Statements

INSERT
INTO T_VENDOR
(

 nam_vendor,
 cde_active,
 dte_crtd,
 idn_user_crtd

)
VALUES
(

 @Name,
 @Active,
 GETDATE(),
 @ModifiedUser

)

Example of Update Statement

UPDATE T_VENDOR

 SET nam_vendor = @Name,
 cde_active = @Active,
 dte_crtd = GETDATE(),
 idn_user_crtd = @ModifiedUser

 WHERE nbr_vendor = @VendorID

Example of Delete Statement

DELETE
FROM T_VENDOR
WHERE nbr_vendor = @VendorID

 Example of Case Statement

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 9 of 37

 CASE @myfield
 WHEN 'A' THEN 'ABC '
 WHEN 'B' THEN 'BCD '
 WHEN 'C' THEN 'CDE '
 ELSE 'JKL'
 END

Naming Conventions

For table and column names please reference the Data Administration Standards on the
Data Domain page under Business and Technical Standards on the BIS web site.

Table Naming

All table names follow the current BIS naming conventions and are prefaced with a T_.

 Example: T_FIPS_CODE

Column Naming

All column names follow the current DHS naming conventions.

View Naming

All view names consist of the prefix VW_ followed by business function they perform or
business rule they enforce.

 Example: VW_SEL_T_FIPS_CODE

Variable Formats

All variable names are defined in a consistent manner across all the programs. To
ensure consistency parameters are descriptive and define correctly according to their
usage.

 @p_IDN_RECON integer,
@p_IDN_ALJ integer,
@p_HONORABLE varchar(20)= NULL,

Parameters can be set to NULL.

Instead of using an IF block to check for NULL parameters, NULLS are checked like the
example below. Second example is to check a range.

(B.CDE_PARTY_RQNG = @p_CDE_PARTY_RQNG OR @p_CDE_PARTY_RQNG IS NULL)

http://mydhs/oa/bis/index.htm

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 10 of 37

 ((DTE_FAA_BHA >= @p_DTE_FAA_BHA_FROM AND DTE_FAA_BHA <= @p_DTE_FAA_BHA_TO)
 OR (@p_DTE_FAA_BHA_FROM Is NUll AND @p_DTE_FAA_BHA_TO Is NUll))

If you have to use a dynamic order by (sort results) pass in the field to sort and the sort
order.

@p_field_order_sort varchar(50)=null,
@p_order_sort varchar(4)=null

IF @p_order_sort = 'ASC'

 BEGIN
 SELECT m.ProviderName as NAM_PROVR,
 m.NAM_BUSNS_MP,
 m.NAM_PROVR_ALT,

 FROM TBLMEDICHECK m

 WHERE m.Providername = @p_nam_provr

 ORDER BY
 CASE @p_field_order_sort
 WHEN 'NAM_PROVR' THEN m.ProviderName
 WHEN 'NAM_BUSNS_MP' THEN m.NAM_BUSNS_MP
 WHEN 'NAM_PROVR_ALT' THEN NAM_PROVR_ALT
 END

 ASC;

 END

 ELSE

 BEGIN

 SELECT m.ProviderName as NAM_PROVR,
 m.NAM_BUSNS_MP,
 m.NAM_PROVR_ALT,

 FROM TBLMEDICHECK m

 WHERE m.Providername = @p_nam_provr

 ORDER BY
 CASE @p_field_order_sort
 WHEN 'NAM_PROVR' THEN m.ProviderName
 WHEN 'NAM_BUSNS_MP' THEN m.NAM_BUSNS_MP
 WHEN 'NAM_PROVR_ALT' THEN NAM_PROVR_ALT
 END

 DESC;
 END

Stored Procedures

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 11 of 37

When coding enterprise applications, the use of stored procedures to separate application
logic from database code has been found beneficial. Stored procedures are used for any data
access (SELECT) or manipulation (INSERT, DELETE, UPDATE).

The advantages include:

 Ease of Maintenance – When supporting database structure or application logic
changes, the DML is easily accessible directly from the database, can be easily
scanned using SQL, and eliminates the need to interrogate each COM or .NET
object when searching for a particular database reference. As such, it is
recommended that all web-based applications use stored procedures for the
majority, if not all, database access.

 Enhanced Performance – Stored procedures run directly on the database server,
which is optimally tuned to perform such operations.

 Reusability – Stored procedures can be called from multiple applications, thereby
reducing the time required to design, code and test commonly used application
functions.

Stored procedures are named according to the business function they perform or business rule
they enforce. The name should include a prefix of USP and a business description of the
action performed. The name is appropriately abbreviated with items found in the standard
abbreviation list. An example of a procedure name is USP_ADD_NEW_T_INDIV. As the
name implies, this procedure adds a new row to the T_INDIV table.

All stored procedures, begin with one of the following:

USP_SELECT
USP_UPDATE
USP_INSERT
USP_DELETE

Stored Procedures performs only one function. This means one insert, one update or one
delete statement per stored procedure. An “if” clause determining whether an insert or update
should be performed, is acceptable. See the DBA team if there are any questions.
Multiple update\delete\insert statements can cause locking\blocking, orphan records and
unhandled transactions.

Do not write store procedures that exceed four pages in length excluding comments, headers,
and maintenance log, without written justification to the data base administrators. Exceptions
to the rule are procedures used in conversion or loads of data. Analyze code exceeding this
limit and split into smaller stored procedures or modularize.

For a SELECT, items in yellow are standard. The comment block is simple and contains a brief
audit listing of changes that go to production; not a running summary of changes during
development. Error Trapping is highly recommended with the Enterprise libraries, because if

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 12 of 37

you have an error, the first thing we ask is what the error log says. Please also list the fields.
No SELECT * is allowed. Also, white space for readability is also highly desirable.

Example

USE [RECON]
GO
/****** Object: StoredProcedure [RECONSchema].[USP_SELECT_BACK_END_RECON]
Script Date: 09/10/2015 09:23:38 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
/**
-- Author: George Washington
-- Create date: 07/04/2012
-- Description: get all fields for the Back End Screen from the RECON table

DATE: Developer Change
---------- ---------------- --
01/05/2012 George Washington New
03/25/2013 Tom Jefferson Added DTE_CLER_RTND
**/

ALTER PROCEDURE [RECONSchema].[USP_SELECT_BACK_END_RECON]
 (
 @IDN_RECONS Integer
)
AS
BEGIN

 SET NOCOUNT ON;

 BEGIN TRY

SELECT [IDN_RECONS]
 ,[TXT_CASE_NUM]
 ,[TXT_APPEAL_NUM]
 ,[TXT_BHA_FILE_NUM]
 ,[DTE_RCVD_BHA]
 ,[DTE_MLNG_ORDER_FINAL_SCTRY]
 ,[DTE_CREATN]
 ,[NAM_BY_CRTD]
 ,[DTE_MODFD]
 ,[NAM_BY_MODFD]

 FROM [RECON].[dbo].[T_RECON]
 where IDN_RECONS = @IDN_RECONS

 END TRY

 BEGIN CATCH
 SELECT

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 13 of 37

 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_PROCEDURE() AS ErrorProcedure,
 ERROR_LINE() AS ErrorLine,
 ERROR_MESSAGE() AS ErrorMessage;
 END CATCH
END

For an UPDATE, items in yellow are standard. The comment block is simple and contains a
brief audit listing of changes that go to production; not a running summary of changes during
development. Error Trapping is highly recommended with the Enterprise libraries, because if
you have an error, the first question is what the error log says. Please also list the fields. No
SELECT * is allowed. Also, white space for readability is also highly desirable.

Example

USE [StateFacilityTrackingSystem]
GO
/****** Object: StoredProcedure [PTS].[USP_UPDATE_BSU] Script Date: 09/10/2015
09:52:53 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

/**
Database: StateFacilityTrackingSystem
Procedure Name: USP_UPDATE_BSU
Date: 10/21/2014
Author: Harry Potter

Procedure Desc: This procedure creates new bsu for existing admission.

Parameters: see below

**
DATE: Developer Change
---------- ---------------- --
02/02/2014 PETER PAN New

**/

ALTER PROCEDURE [PTS].[USP_UPDATE_BSU]

@IDN_PTN_ADMSN AS INT=0,
@IDN_BSU AS INT,
@PNT_BSU_CODE AS VARCHAR(7),
@PNT_BSU_NUMBER AS VARCHAR(7),
@PNT_BSU_EFF_DTE AS DATETIME,
@CWOPA_ID AS VARCHAR(12)=NULL

AS
SET NOCOUNT ON;

BEGIN TRY

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 14 of 37

UPDATE PTS.T_PNT_BSU

SET CDE_BSU=@PNT_BSU_CODE,
 DTE_EFFV_BSU=@PNT_BSU_EFF_DTE,
 NBR_CASE_BSU=@PNT_BSU_NUMBER,
 DTE_UPDTD_RECORD=GETDATE(),
 IDN_USER_UPDTD_RECORD=@CWOPA_ID

WHERE IDN_BSU_PNT=@IDN_BSU

 END TRY

 BEGIN CATCH
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_PROCEDURE() AS ErrorProcedure,
 ERROR_LINE() AS ErrorLine,
 ERROR_MESSAGE() AS ErrorMessage;
 END CATCH

An INSERT/UPDATE is also acceptable as long as you are doing either an INSERT or an
UPDATE – not both! This is acceptable:

IF @P_IDN_USER = ‘cwopa\user’

 BEGIN

 UPDATE PIOS.dbo.T_CW_ASGMT

 SET IDN_CW = @P_IDN_CW,
 DTE_ASGMT_CASE = @P_DTE_ASGMT_CASE,
 IDN_USER_CHANGE_LAST = @P_IDN_USER,
 DTE_RECORD_CHANGE_LAST = GetDate()

 WHERE IDN_ASGMT_CW = @P_IDN_ASGMT_CW
 END
ELSE

 BEGIN

 INSERT INTO PIOS.dbo.T_CW_ASGMT
 (IDN_CW
 ,IDN_STATUS
 ,DTE_CHANGE_STATUS)

 VALUES
 (@P_IDN_CW
 ,@P_IDN_STATUS
 ,NULL)
 END

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 15 of 37

THIS IS NOT ACCEPTABLE: An Insert or UPDATE stored procedure
performs one UPDATE or INSERT, and rarely more than that. Check
parameters in your .NET code and then an INSERT or UPDATE is called.

A Transaction can be set in the .NET code to either commit all
INSERTS or none of them if the code has multiple INSERTS/UPDATES.
In this case a collection in .NET can be used and the same INSERT
could be called as many times as needed as you loop through the
collection.

USE [RECON]
GO
/****** Object: StoredProcedure [PTS].[USP_INSERT_DIAGNOSTICS] Script Date:
09/10/2015 10:18:52 ******/
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

/**
**
Database : RECON
Procedure Name : USP_INSERT_DIAGNOSTICS
Date : 10/14/2014
Author : Tom Sawyer

Procedure Desc : This procedure inserts records into Diagnostics table.

Parameters: see below

*
DATE: Developer Change
---------- ---------------- --
10/14/2014 Will Robinson New

*/

ALTER PROCEDURE [PTS].[USP_INSERT_DIAGNOSTICS]
@idn_pnt AS INT,
@idn_admsn_pnt AS INT,
@ambulationCode AS VARCHAR(1),
@psych_Code_1 AS VARCHAR(7) ,
@psych_Code_Date_1 AS DATETIME,
@psych_Code_NBR_Order_1 AS VARCHAR(1),
@psych_Code_2 AS VARCHAR(7),
@psych_Code_Date_2 AS DATETIME,
@psych_Code_NBR_Order_2 AS VARCHAR(1),
@psych_Code_3 AS VARCHAR(7),
@psych_Code_Date_3 AS DATETIME,
@psych_Code_NBR_Order_3 AS VARCHAR(1),
@psych_Code_4 AS VARCHAR(7),
@psych_Code_Date_4 AS DATETIME,
@psych_Code_NBR_Order_4 AS VARCHAR(1),
@psych_Code_5 AS VARCHAR(7),

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 16 of 37

@psych_Code_Date_5 AS DATETIME,
@psych_Code_NBR_Order_5 AS VARCHAR(1),
@psych_Code_6 AS VARCHAR(7),
@psych_Code_Date_6 AS DATETIME,
@psych_Code_NBR_Order_6 AS VARCHAR(1),
@psych_Code_7 AS VARCHAR(7),
@psych_Code_Date_7 AS DATETIME,
@psych_Code_NBR_Order_7 AS VARCHAR(1),
@substance_Code_1 AS VARCHAR(7),
@substance_Code_Date_1 AS DATETIME,
@substance_Code_NBR_Order_1 AS VARCHAR(1),
@substance_Code_2 AS VARCHAR(7),
@substance_Code_Date_2 AS DATETIME,
@substance_Code_NBR_Order_2 AS VARCHAR(1),
@substance_Code_3 AS VARCHAR(7),
@substance_Code_Date_3 AS DATETIME,
@CWOPA_ID AS VARCHAR(12)
AS

SET NOCOUNT ON;

BEGIN TRY

 BEGIN TRANSACTION;

 INSERT INTO PTS.T_PNT_AMBTN
 (
 CDE_AMBTN,
 IDN_ADMSN_PNT,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD
)
 VALUES
 (
 @ambulationCode,
 @idn_admsn_pnt,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID
)

 if @psych_Code_1 IS NOT NULL and LTRIM(RTRIM(@psych_Code_1)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 17 of 37

 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @psych_Code_Date_1,
 0,
 @psych_Code_NBR_Order_1,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @psych_Code_1,
 1
)
 end

 if @psych_Code_2 IS NOT NULL and LTRIM(RTRIM(@psych_Code_2)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @psych_Code_Date_2,
 0,
 @psych_Code_NBR_Order_2,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @psych_Code_2,
 1
)
 end

 if @psych_Code_3 IS NOT NULL and LTRIM(RTRIM(@psych_Code_3)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 18 of 37

 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @psych_Code_Date_3,
 0,
 @psych_Code_NBR_Order_3,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @psych_Code_3,
 1
)
 end

 if @psych_Code_4 IS NOT NULL and LTRIM(RTRIM(@psych_Code_4)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @psych_Code_Date_4,
 0,
 @psych_Code_NBR_Order_4,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @psych_Code_4,
 1
)
 end

 if @psych_Code_5 IS NOT NULL and LTRIM(RTRIM(@psych_Code_5)) <> ''
 begin

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 19 of 37

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @psych_Code_Date_5,
 0,
 @psych_Code_NBR_Order_5,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @psych_Code_5,
 1
)
 end

 if @psych_Code_6 IS NOT NULL and LTRIM(RTRIM(@psych_Code_6)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @psych_Code_Date_6,
 0,
 @psych_Code_NBR_Order_6,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @psych_Code_6,
 1
)

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 20 of 37

 end

 if @psych_Code_7 IS NOT NULL and LTRIM(RTRIM(@psych_Code_7)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @psych_Code_Date_7,
 0,
 @psych_Code_NBR_Order_7,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @psych_Code_7,
 1
)
 end

 if @substance_Code_1 IS NOT NULL and LTRIM(RTRIM(@substance_Code_1)) <>
''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @substance_Code_Date_1,
 0,
 @substance_Code_NBR_Order_1,
 GETDATE(),
 @CWOPA_ID,

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 21 of 37

 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @substance_Code_1,
 2
)
 end

 if @substance_Code_2 IS NOT NULL and LTRIM(RTRIM(@substance_Code_2)) <>
''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @substance_Code_Date_2,
 0,
 @substance_Code_NBR_Order_2,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @substance_Code_2,
 2
)
 end

 if @substance_Code_3 IS NOT NULL and LTRIM(RTRIM(@substance_Code_3)) <>
''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 22 of 37

 VALUES
 (
 @substance_Code_Date_3,
 0,
 @substance_Code_NBR_Order_3,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @substance_Code_3,
 2
)
 end

 if @substance_Code_4 IS NOT NULL and LTRIM(RTRIM(@substance_Code_4)) <>
''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @substance_Code_Date_4,
 0,
 @substance_Code_NBR_Order_4,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @substance_Code_4,
 2
)
 end

 if @medical_Code_1 IS NOT NULL and LTRIM(RTRIM(@medical_Code_1)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 23 of 37

 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @medical_Code_Date_1,
 0,
 @medical_Code_NBR_Order_1,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @medical_Code_1,
 3
)
 end

 if @medical_Code_2 IS NOT NULL and LTRIM(RTRIM(@medical_Code_2)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @medical_Code_Date_2,
 0,
 @medical_Code_NBR_Order_2,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @medical_Code_2,
 3
)
 end

 if @medical_Code_3 IS NOT NULL and LTRIM(RTRIM(@medical_Code_3)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 24 of 37

 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @medical_Code_Date_3,
 0,
 @medical_Code_NBR_Order_3,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @medical_Code_3,
 3
)
 end

 if @medical_Code_4 IS NOT NULL and LTRIM(RTRIM(@medical_Code_4)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @medical_Code_Date_4,
 0,
 @medical_Code_NBR_Order_4,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @medical_Code_4,
 3
)
 end

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 25 of 37

 if @medical_Code_5 IS NOT NULL and LTRIM(RTRIM(@medical_Code_5)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @medical_Code_Date_5,
 0,
 @medical_Code_NBR_Order_5,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @medical_Code_5,
 3
)
 end

 if @medical_Code_6 IS NOT NULL and LTRIM(RTRIM(@medical_Code_6)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @medical_Code_Date_6,
 0,
 @medical_Code_NBR_Order_6,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 26 of 37

 @medical_Code_6,
 3
)
 end

 if @medical_Code_7 IS NOT NULL and LTRIM(RTRIM(@medical_Code_7)) <> ''
 begin

 INSERT INTO PTS.T_PNT_DGNSTC
 (
 DTE_EFFV_DGNSTC,
 IND_RECORD_ARCD,
 NBR_ORDER_DGNSTC,
 DTE_CREATN_RECORD,
 IDN_USER_CREATN_RECORD,
 DTE_UPDTD_RECORD,
 IDN_USER_UPDTD_RECORD,
 IDN_ADMSN_PNT,
 IDN_DX,
 IDN_TYPE_DGNSTC
)
 VALUES
 (
 @medical_Code_Date_7,
 0,
 @medical_Code_NBR_Order_7,
 GETDATE(),
 @CWOPA_ID,
 GETDATE(),
 @CWOPA_ID,
 @idn_admsn_pnt,
 @medical_Code_7,
 3
)
 end

 COMMIT;
END TRY
BEGIN CATCH

 ROLLBACK;
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_PROCEDURE() AS ErrorProcedure,
 ERROR_LINE() AS ErrorLine,
 ERROR_MESSAGE() AS ErrorMessage;
END CATCH

Triggers

Triggers are to be avoided as they have the potential to cause execute multiple SQL
statements without other developer knowledge.

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 27 of 37

Constraints

Planning and creating tables requires identifying how to enforce integrity of the data stored
within the columns of the tables. MS SQL Server has the following constraints to enforce
integrity:

Primary Key Constraints are columns or a column that uniquely identifies a row within
a table. All tables should have a primary key and composite primary keys should be
avoided. Primary keys should be named PK_tablename_columnname. For most of your
OLTP tables, an identity column is the primary key.

Example: PK_T_ADDRESS_IDN_ADDR.

Foreign Key Constraints are columns or a column that is used to enforce a relation
between information in two tables. A link is defined between the two tables when a
primary key is referenced by a column or columns in another table. The reference
becomes a foreign key in the second table. Foreign keys are named as
FK_foreignkeytable_primarykeytable_columnname.

Example: FK_T_NAME_T_ADDRESS_IDN_ADDR.

Indexes

An index is an on-disk structure associated with a table or a view that speeds retrieval of rows
from the table or the view. An index contains keys built from one or more columns in the table
or the view. These keys are stored in a structure (B-tree) that enables SQL Server to find the
row or rows associated with the key values quickly and efficiently.

A table or view can contain the following types of indexes:

• Clustered

o Clustered indexes sort and store the data rows in the table or view based on their
key values. These are the columns included in the index definition. There can be
only one clustered index per table, because the data rows themselves can be
sorted in only one order.

o The only time the data rows in a table are stored in sorted order is when the table
contains a clustered index. When a table has a clustered index, the table is
called a clustered table. If a table has no clustered index, its data rows are stored
in an unordered structure called a heap.

• Nonclustered

o Nonclustered indexes have a structure separate from the data rows. A
nonclustered index contains the nonclustered index key values and each key
value entry has a pointer to the data row that contains the key value.

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 28 of 37

o The pointer from an index row in a nonclustered index to a data row is called a
row locator. The structure of the row locator depends on whether the data pages
are stored in a heap or a clustered table. For a heap, a row locator is a pointer to
the row. For a clustered table, the row locator is the clustered index key.

Indexes should be named IDX_ tablename_columnname(s).

 Example: IDX_T_ADDR_STATE_STATE

Default Definitions

Default Definitions are predefined values created on columns within a table. The default
value is used when inserting a new row in a table and a particular column in the insert
statement does not have a value. For example you may have a default of all 99999999
that you may want to set up as a default end date. The default has a prefix of D_
followed by a description of what the default does.

 Example: DF_OPEN_DATE

User Defined Functions

User defined functions can be created in SQL Server Management Studio to perform actions
such as complicated calculations or character string manipulation. User defined functions are
created and used for actions repeated within an application. An example is adding dashes to
social security number. This user defined function could be created and used any time a
correctly formatted social security number is required. User defined functions are named
UDF_function.

 Example: UDF_FORMATSSN

Transaction and Error Handling

Try…Catch

Try…Catch, is the preferred error handling method in SQL Server. This method is used in
place of the old RAISEERROR.

Errors in Transact-SQL code can be processed by using a TRY…CATCH construct similar to
the exception-handling feature of the Microsoft .NET and Microsoft Visual C# languages. A
TRY…CATCH construct consists of two parts: a TRY block and a CATCH block. When an
error condition is detected in a Transact-SQL statement that is inside a TRY block, control is
passed to a CATCH block where the error can be processed.

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 29 of 37

After the CATCH block handles the exception, control is then transferred to the first Transact-
SQL statement that follows the END CATCH statement. If the END CATCH statement is the
last statement in a stored procedure or trigger, control is returned to the code that invoked the
stored procedure or trigger. Transact-SQL statements in the TRY block following the statement
that generates an error is not executed.

If there are no errors inside the TRY block, control passes to the statement immediately after
the associated END CATCH statement. If the END CATCH statement is the last statement in a
stored procedure or trigger, control is passed to the statement that invoked the stored
procedure or trigger.

A TRY block starts with the BEGIN TRY statement and ends with the END TRY statement.
One or more Transact-SQL statements can be specified between the BEGIN TRY and END
TRY statements.

A TRY block must be followed immediately by a CATCH block. A CATCH block starts with the
BEGIN CATCH statement and ends with the END CATCH statement. In Transact-SQL, each
TRY block is associated with only one CATCH block.

Working with TRY…CATCH

When using the TRY…CATCH construct, consider the following guidelines and suggestions:

Each TRY…CATCH construct must be inside a single batch, stored procedure, or trigger. For
example, you cannot place a TRY block in one batch and the associated CATCH block in
another batch. The following script would generate an error:

BEGIN TRY

 SELECT IDN_AGENCY, NAM_AGENCY
 FROM dbo.T_AGENCY
 ORDER BY NAM_AGENCY

END TRY

 BEGIN CATCH
 SELECT
 ERROR_NUMBER() AS ErrorNumber,
 ERROR_SEVERITY() AS ErrorSeverity,
 ERROR_STATE() AS ErrorState,
 ERROR_PROCEDURE() AS ErrorProcedure,
 ERROR_LINE() AS ErrorLine,
 ERROR_MESSAGE() AS ErrorMessage;
 END CATCH

Transact-SQL Restrictions

Following is SQL Server functionality that is not used when developing procedures or
triggers.

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 30 of 37

Cursors
Cursors are not allowed.

Looping within Stored Procedures.
Looping within stored procedures is PROHIBITED. Looping is only performed in developer
code and not in SQL stored procedures. An infinite loop can bring down SQL Server.

THIS IS NOT ACCEPTABLE!

WHILE len(@IDN_USER) > 0
 BEGIN
 SET @ID_USER =LEFT(@IDN_USER, charindex(',', @IDN_USER+',')-1)
 INSERT INTO dbo.T_COURSE_INSTRR
 (IDN_OFFNG_COURSE,
 IDN_USER)

 VALUES (@IDN_COURSE_OFFRNG,
 @IDN_USER)
 END

Use of “*=” and “=*” and SQL JOINS- stopping point
Do not use of the “*=” and ”=*” join operators in the WHERE clause. Use instead the JOIN
keyword in the FROM clause. Microsoft does not recommend the use of “*=” and ”=*” and
may not provide support for these in future releases of MS SQL Server. Using this syntax
for joins is discouraged (by Microsoft) because of the potential for ambiguous interpretation
and because it is nonstandard. Be sure to use the join syntax. Instead of using where a = b
and b = c, for example, use inner join on a = b, etc. Use left and right outer joins as well as
UNION ALLS sparingly. Pick the join order carefully. The majority of outer joins can
successfully be rewritten as inner joins with tremendous performance improvements.

Use of SELECT INTO
Do not use the SELECT INTO clause to create a table on the fly. Instead, create your table
before the SELECT statement and use the INSERT statement followed by the appropriate
SELECT.

Usage of Column Prefixes
It is generally recommended to use prefixes for columns appearing in the SELECT list. This
is a coding best practice that leads to more maintainable applications.
As an example, it is preferred to have:

 SELECT a.au_id, a.au_lname FROM dbo.authors a

Over this:
 SELECT au_id, au_lname FROM dbo.authors

Database SQL Options

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 31 of 37

Database SQL Options should be configured as recommended to remove deprecated
behaviors, be ANSI compliant, and be able to leverage the full feature set (indexed views
and indexes on computed columns).
The following SQL options should be checked to see if they are configured properly as per
Microsoft SQL Options control ANSI compliance options.
The following database SQL Options should be ON:

• ANSI_NULLS
• ANSI_PADDING
• ANSI_WARNINGS
• ARITHABORT
• CONCAT_NULL_YIELDS_NULL
• QUOTED_IDENTIFIERS

The following should be OFF:

• NUMERIC_ROUNDABOUT

Use of Defaults and Rules
Database Administrators check stored procedures, functions, views and triggers for
existence of defaults and rules.
These objects have been deprecated in favor of CHECK constraints and are not supported
in future releases of SQL Server.

Null Comparisons
Database Administrators check stored procedures, views, functions and triggers to flag the
use of equality and inequality comparisons involving a NULL constant. These comparisons
are undefined when ANSI_NULLS option is set to ON.
It is recommended to set ANSI_NULLS to ON and use the IS keyword to compare against
NULL constants.
In a future version of SQL Server, ANSI_NULLS will always be ON and any applications
that explicitly set the option to OFF will generate an error. Avoid using this feature in new
development work, and plan to modify applications that currently use this feature.

String = Expression Aliasing
Database Administrators check stored procedures, functions, views and triggers for use of
column aliases where the name of the expression uses a string value. It is recommended to
use quoted identifiers instead. String aliases are not supported in future releases of SQL
Server.
As an example, the following syntax is not recommended:

 SELECT 'alias_for_col'=au_id+au_id FROM dbo.authors

Recommended alternatives are:

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 32 of 37

 SELECT au_id+au_id as "alias_for_col" FROM dbo.authors
 SELECT au_id+au_id as alias_for_col FROM dbo.authors
 SELECT au_id+au_id as [alias_for_col] FROM dbo.authors

Primary Keys
Database Administrators check all user databases to ensure that all tables have defined
either a primary key or have a column with a Unique Constraint defined. Tables without a
Primary Key defined or a column with a unique constraint defined will not be approved.

Foreign Keys
Database Administrators check all user databases to ensure that proper foreign
key/primary key relationships are created when needed. Foreign keys are also defined as
indexes.

Order by Clause with Ordinals
Database Administrators check stored procedures, functions, views and triggers for use of
ORDER BY clause specifying ordinal column numbers as sort columns.
As an example, the following syntax is not allowed:

 SELECT au_id FROM dbo.authors ORDER BY 2, 1

The use of ordinal column numbers is not be allowed.

Schema Usage
Use Schema Usage only as needed; otherwise, the default schema ‘dbo’, is used.
Database Administrators check stored procedures, functions, views and triggers for use of
schema qualified names when referencing tables and views.
Unless specified otherwise, all Transact-SQL references to the name of a database object
can be a four-part name in the form:
 [
 server_name.[database_name].[schema_name].
 | database_name.[schema_name].
 | schema_name.
]
]
When referencing a specific object, it is not necessary to specify the server, database, and
owner (schema) for SQL Server to identify the object. However, it is recommended that at
least the schema name be specified to identify a table or view inside a stored procedure,
function, view or trigger.
When SQL Server looks up a table/view without a schema qualification, it first looks in the
default schema and then looks in the 'dbo' schema. The default schema corresponds to
the current user for adhoc batches, and corresponds to the schema of a stored procedure

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 33 of 37

when inside one. In either case, SQL Server incurs an additional runtime cost to verify
schema binding of unqualified objects. Applications are more maintainable and may
experience a slight performance improvement if object references are schema qualified.

Top without Order By
Database Administrators check stored procedures, functions, views and triggers for
usages of TOP in queries without an ORDER BY clause.
It is recommended to specify sort criteria when using TOP clause. Otherwise, the results
produced are plan dependent and may lead to undesired behavior.
Usually TOP without ORDER BY is meaningless.

Avoid Stored Procedure Recompiles
See next section.

Production Adhoc Querying
 Real time adhoc reporting against the production database is not permitted. Microsoft
Access is not allowed to connect to SQL. To do reporting as this causes table locks,
performance degradation and creates a security risk.

Hard coded SQL
Hard coded SQL in web pages or applications is not permitted. Put T-SQL in stored
procedures for security reasons, efficiency and ease in debugging.

Dynamic SQL is not allowed.

Performance Recommendations

 General Considerations

Connections to the SQL Server database are to be brief. A connection is made, a process
completed and the connection dropped. No persistent connections to SQL Server are
allowed.

Stored procedures perform one process and not a series of processes. It is better to create
a stored procedure that performs an insert rather than a stored procedure that performs an
insert, update and a delete. Executing multiple stored procedures is preferred over
executing one, unwieldy, multi-task stored procedure.

Stored Procedure Recompiles
No stored procedures are to interleave Data Definition Language (DDL) and Data
Manipulation Language (DML) operations. In other words, do all CREATE/DROP
statements separate from SELECT and UPDATE statements. If data operations are mixed,

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 34 of 37

the SQL server must recompile procedures each time to determine the best plan to use for
each new or dropped object. Therefore, coding all creates and drops together reduces the
amount of stored procedure compiles. Avoid creating a temporary table in a control-of-flow
statement such as an IF…ELSE or WHILE statement. Avoid using a DROP statement for
temporary tables in stored procedures, because tables are automatically dropped when the
procedure is completed. Specifying the owner of objects such as dbo.Tablename and
dbo.Stored procedure name cuts down on recompiles.

Temporary Tables
Often procedure throughput can be dramatically improved by the use of temporary tables.
Restructuring a Transact-SQL statement that involves lengthy and/or complicated joins to
perform the same functionally by multiple actions against a temp table will improve
performance. Please note: use a temporary table to manipulate small amounts of data,
and if data exceeds 500 records add an index. Also if you have > 6 data changes in a
temporary table consider using the option (keep plan) to avoid unnecessary recompiles.

Table Variable Type
The table variable type functions exactly like the temporary table, with the exception that all
data is loaded directly in random access memory.

Temporary Tables vs. Table Variable
Database Administrators check stored procedures and triggers for usages of temporary
tables that may be replaced by use of table variables.
When a procedure creates a temporary table and has no CREATE INDEX issued on it, and
it is dropped all in the same procedure, consider using table variables instead to potentially
observe fewer recompilations.
Note that if large data volumes are inserted in the temporary table it may still be preferred
to use temporary tables over table variables due to parallel execution restrictions and
statistics maintenance.

Indexes
Examine the performance of the statements within the procedure and the entire application
to determine if an additional index will justify its overhead. Consider overall index usage all
along the development path. Indexes, or lack of indexes, are the direct cause of poor
performance 90% of the time. As per Microsoft’s suggestion, all tables that have more than
500 records are to have a clustered index, even if a field is created just to hold the index.
Please note when setting an index, pay close attention to the fill factor for the given index.
The fill factor is the amount space consumed by the index and more importantly the amount
of space that will be kept free for expansion. For an example a 90% fill factor is 90% full
with 10% left for expansion. For tables that do a high volume of inserts, updates, deletes
consider a lower fill factor, or perhaps not having a clustered index at all. A clustered index
slows down inserts but speed up selects. The developer determines what the best tradeoff
is.

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 35 of 37

Ultimately, it is the responsibility of the developer coding the stored procedures and the
SQL code to determine what the best indexes are and how they are used.

Execution Plan
When debugging and tuning a stored procedure, examine the execution plan for clues as to
the performance of the procedure and how it may be improved. The reason for execution
plan is to determine whether an index is required.
In the example below, execution identifies a missing index that could improve performance.

 From this, one asks if another index should be created to avoid the scan.
 If yes, create an index and rerun.

SQL Profiler/Database Engine Tuning Advisor
Two valuable and necessary tools when tracking and or monitoring performance are SQL Profiler and
Database Engine Tuning Advisor. Only the DBA has permissions to run these two tools. The DBA can
analyze the output from these tools and give suggestions on what tables or objects have problems and
can benefit from index creation.

Programmatic Recommendations
This section provides recommendations to developers for improving the reliability of
procedures and triggers.

Use SET NOCOUNT
When developing procedures that return a result set and use intermediate processing, be
sure to set the SET NOCOUNT ON option to prevent the generation of unwanted result set
count information. Use the SET NOCOUNT OFF statement to restore result counting
before executing a SELECT statement to return results.

Stylistic Recommendations

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 36 of 37

This section provides recommendations to developers for improving the readability of
procedures and triggers.

Nesting IF statements
Avoid, wherever possible, nesting IF statements. Use compound Boolean expressions
instead.
No more than 4 nested IF statements are allowed.

SQL Server 2014 Integration Services

SQL Server Data Tools for Visual Studio 2013 is required when performing extract,
transform and load (ETL) processing. Data Tools replaces SQL Server Business Intelligence
Development Studio and brings enhancements and improvements to creating and executing
packages.

Naming Packages

The name of the SQL Server Integration Services package indicates the database the package
belongs to as well as the purpose of the SSIS package. In a development environment, the
developer testing the package may own the package but in all other environments SA (System
Administrator) owns the package. The package may very well have the same name as the job.
The difference between a job and a package is that a job is a scheduled package. A package
on its own must be started manually. The package names can be mixed case for ease of
readability.

 Example: CUSTOMERVendorExport

SQL Server 2014 Reporting Services

SQL Server 2014 Reporting Services (SSRS) is required when creating any reports for use at
the DHS.

Naming Reports

The name of the SQL Server 2014Reporting Services object should indicate the database the
report belongs to as well as the purpose of the SSRS package. The report names can be
mixed case for ease of readability.

 Example: CUSTOMERNameAndAddresses

Job Naming Standards

A job consists of a series of SQL Statements executed as a transaction (as one complete unit).
The name of a SQL SERVER job indicates the database to which the job belongs as well as
the purpose of the job. The job name is the same name as the SSIS package.

MS SQL Server 2012 2014 Naming and Coding Standard.docx Page 37 of 37

SA owns the job in all environments. All jobs need DBA approval prior to being scheduled to
run. The job names are mixed case for ease of readability.

 Example: ACCOUNTINGImportDailyFiles
Exemptions from this Standard:
There will be no exemptions to this standard.

Refresh Schedule:
All standards and referenced documentation identified in this standard will be subject to review
and possible revision annually or upon request by the DHS Information Technology Standards
Team.

References:
Microsoft SQL Server 2008/2012/2014 Books On Line

Standard Revision Log:

Change
Date

Version Change Description Author and
Organization

 1.0 New document Kiley Milakovic

12/11/2007 1.1 SQL Server 2005 revisions Matt Leitzel

01/13/2011 1.2 SQL Server 2008 revisions Matt Leitzel

09/15/2016 1.3 SQL Server 2012/2014 revisions Steve Isleib and Michael
Kraus

	COMMONWEALTH OF PENNSYLVANIA
	DEPARTMENT’S OF HUMAN SERVICES, INSURANCE, AND AGING
	INFORMATION TECHNOLOGY STANDARD
	Working with TRY…CATCH

