Revised 06/11/01
 DPW Business and Technical Standards

[bookmark: _GoBack]

Pennsylvania
Department of Public Welfare
Office of Information Systems

Types of Joins

Version 1.0

June 11, 2001

Table of Contents

Introduction	3
Purpose	3
Document Change Log	3
Nested Loop Join	4
Access Considerations	4
Performance Considerations	4
When Used:	4
Merge Scan Join, (Also known as Merge Join, or Sort Merge Join)	5
Access Considerations	5
Performance Considerations	5
When Used:	5
Hash Joins	6
Performance Considerations	6
When Used:	6

Types of Joins
[bookmark: _Toc21860763][bookmark: _Toc32981890]Introduction

[bookmark: _Toc530808826][bookmark: _Toc530808882][bookmark: _Toc15466602][bookmark: _Toc15466651][bookmark: _Toc15466771][bookmark: _Toc17877531][bookmark: _Toc17877966][bookmark: _Toc17878345][bookmark: _Toc17878384][bookmark: _Toc17879159][bookmark: _Toc17879352][bookmark: _Toc17879374][bookmark: _Toc17880982][bookmark: _Toc19421204][bookmark: _Toc19421471][bookmark: _Toc19423355][bookmark: _Toc19423381][bookmark: _Toc19683747][bookmark: _Toc19683982][bookmark: _Toc21860764][bookmark: _Toc32981891]Purpose
The following are common join methods used in various databases, including Oracle and SQL Server. The characteristics of each join method are typically consistent across the various database management systems, however slight differences may exist. Please consult your documentation set for more detailed information.

Typical join conditions require that the conditions expressed in the ‘Where’ criteria are satisfied in both tables before performing the join. This is known as an inner join. In order to include rows in the results set where only one table satisfies the selection criteria, an Outer join may be used. You can create three variations of an outer join to specify how the unmatched rows are to be included:
Left outer join All rows from the first-named table (the "left" table, which appears leftmost in the JOIN clause) are included. Unmatched rows in the right table do not appear.
Right outer join All rows in the second-named table (the "right" table, which appears rightmost in the JOIN clause) are included. Unmatched rows in the left table are not included.
Full outer join All rows in all joined tables are included, whether they are matched or not.
[bookmark: _Toc15466603][bookmark: _Toc15466653][bookmark: _Toc15466772][bookmark: _Toc17877532][bookmark: _Toc17877967][bookmark: _Toc17878346][bookmark: _Toc17878385][bookmark: _Toc17879160][bookmark: _Toc17879353][bookmark: _Toc17879375][bookmark: _Toc17880983][bookmark: _Toc19421205][bookmark: _Toc19421472][bookmark: _Toc19423356][bookmark: _Toc19423382][bookmark: _Toc19683748][bookmark: _Toc19683983][bookmark: _Toc21860765][bookmark: _Toc32981892]Document Change Log

	Change Date
	Version
	CR #
	Change Description
	Author and Organization

	06/11/01
	1.0
	
	Initial creation.
	Unknown

[bookmark: _Toc15466604][bookmark: _Toc15466654][bookmark: _Toc15466773]

[bookmark: _Toc19421206][bookmark: _Toc19421473][bookmark: _Toc19423357][bookmark: _Toc19423383][bookmark: _Toc19683749][bookmark: _Toc19683984][bookmark: _Toc21860766][bookmark: _Toc32981893]Nested Loop Join
Paragraph text goes here.
Consider two joined tables, A and B. If the number of rows in table A is less than or equal two then number of rows in table B, the Optimizer will choose larger table B as the Inner table and smaller table A as the outer table or the driving table.

The database will sequentially scan the Outer table. For each row in that table that qualifies (by satisfying the where predicates on that table), the database searches for matching rows on the Inner table. It concatenates any it finds with the current row of the composite table. If no rows match the current row, then:

For an inner join, the database discards the current row
For an outer join, the database concatenates a row of null values

[bookmark: _Toc517003744][bookmark: _Toc32981894]Access Considerations

For either the Inner or Outer table, the database may choose any of the available access methods, including a full table scan.

[bookmark: _Toc517003745][bookmark: _Toc32981895]Performance Considerations

The cost of the Nested Loop Join can be prohibitive for large tables. The number of comparisons can be significantly reduced when a B*tree index exists on the larger, Inner table. This variation is known as Index Nested Loop Join and can be used for any join condition – equality, less than, greater than, etc. The performance of an indexed nested loop join is reasonably good for resultant sets of low cardinality. An Indexed Nested Loop Join performs well when the columns are retrieved by an index look-up without accessing the big table. However, if the B*tree index is several levels deep, or possibly fragmented, then the Indexed Nested Loop Join is usually not efficient due to the need to access large number of intermediate nodes in the B*tree.

[bookmark: _Toc517003746][bookmark: _Toc32981896]When Used:
Small outer table
Predicates with small filter factors reduce the number of qualifying rows in the outer table
An efficient, highly clustered index exists on the join columns of the inner table

[bookmark: _Toc32981897]Merge Scan Join, (Also known as Merge Join, or Sort Merge Join)
In a Merge Join, the two inputs are processed separately (usually by a full table scan), sorted and joined. Merge Join operations are commonly used when there are no indexes available for the limiting conditions of the query. The set of rows returned from each scan are sorted separately and then merged into a single results set.

[bookmark: _Toc517003748][bookmark: _Toc32981898]Access Considerations

Because a Merge Join operation has to wait for two separate sorts, this type of join will perform poorly for on-line users.

[bookmark: _Toc517003749][bookmark: _Toc32981899]Performance Considerations

As the tables increase in size, the time required for the sorts to be completed increases dramatically. If the tables are of greatly unequal size, then the sorting operation performed on the larger table will negatively impact the performance of the overall query.

[bookmark: _Toc517003750][bookmark: _Toc32981900]When Used:
No indexes exist on the limiting condition columns
Both tables are very small (scanning and sorting will be completed quickly)
Both tables are very large (scanning and sorting can take advantage of parallel processing, if available)

[bookmark: _Toc32981901]Hash Joins
The Hash Join operation compares two tables in memory. During a Hash Join, the first table is scanned and the database applies ‘hashing’ functions to create a hashing table in memory. This internal table performs like an index to assist in the join process. Unlike with nested loops, the presence or absence of indexes is not a concern in this case because an internal index (hashing table) is built. Hash joins are CPU-intensive in comparison to nested loops and are affected by available memory. Hash joins are better when there is a significant difference in the sizes of the tables being joined. A single hash join can perform both grouping and join at the same time when the grouping attribute is also the join attribute. The result of this join is not in any particular order. Keep in mind that this type of join cannot satisfy inequality conditions.

[bookmark: _Toc517003752][bookmark: _Toc32981902]
Performance Considerations

Hash Joins are appropriate for queries executed by online users if the tables are small and can be scanned quickly.

[bookmark: _Toc517003753][bookmark: _Toc32981903]When Used:
Ample system resources exist (CPU and memory)
Joined tables are relatively small

Page 6 of 6
Types of Joins.doc

