
MQSeries - Standards and conventions

Version 1.1

9 October, 2000

Property of IBM

Take Note!

Before using this report be sure to read the general information under "Notices".

Second Edition, October 2000

This edition applies to Version 1.1 of MQSeries - Standards and conventions and to all
subsequent releases and modifications unless otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2000. All rights
reserved. Note to US Government Users -- Documentation related to restricted rights -- Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule contract with
IBM Corp.

MQSeries - Standards and conventions

ii

Table of Contents

15Reply Queue .

14Versions .

13Names .

13Queues .

13Chapter 3. Applications .

12MQSeries for Windows V2 .

12Client Connections .

11Message Channels .

10Transmission Queue .

9Clusters .

9Channels .

8Dead Letter Queue .

8Storage Class .

7Default Queue Manager .

5Queue Managers .

5Chapter 2. MQ Network Structure .

3Defaults .

2Object Names .

1Administration .

1Chapter 1. General Items .

viiiBibliography .

viiHow this Document is Organized .

viiPreface .

viSummary of Amendments .

vNotices .

MQSeries - Standards and conventions

iii

20Programming Conventions .

19Trigger Control .

19Initiation Queue .

18Process .

17Programs .

17Triggering .

17Namelists .

17Queues for Bridges and Links .

16Dynamic Queues .

MQSeries - Standards and conventions

iv

Notices
References in this report to IBM products or programs do not imply that IBM intends to make
these available in all countries in which IBM operates.

Information contained in this report has not been submitted to any formal IBM test and is
distributed “asis”. The use of this information and the implementation of any of the techniques
is the responsibility of the reader. Much depends on the ability of the reader to evaluate these
data and project the results to their operational environment.

The performance data contained in this report was measured in a controlled environment and
results obtained in other environments may vary significantly.

Trademarks and service marks

The following terms, and the e-business logo, are trademarks of International Business
Machines Corporation in the United States, or other countries, or both:

AIX AS/400 CICS
CICS/ESA IBM IMS
MQ MQSeries MVS
MVS/ESA OS/2 OS/390
OS/400 RACF SupportPac

Lotus, Lotus Notes, and Domino are trademarks of Lotus Development Corporation in the
United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service marks of
others.

MQSeries - Standards and conventions

v

Summary of Amendments

Further recommendations and clarification, based on user
experiences, and reflecting product changes

9 October 2000

Initial release17 August 1998

ChangesDate

MQSeries - Standards and conventions

vi

Preface
A key element of success in using MQSeries is to plan ahead; and one important aspect of
this consists of adopting a set of workable standards and conventions. It is a frequent question
from those aspiring to get the best from MQSeries, and the aim of this document is to address
that question.

There have been various suggestions for MQ standards since the product was first
introduced. None has been comprehensive; some have offered contradictory advice; some
advice would undo designed features of MQSeries if followed.

Of course, almost any standard is better than none, so all these proposals have had some
support. This document aims to recommend some standards and hints, encompassing all
aspects of MQSeries, and allowing MQSeries to be exploited the way it was designed.

Users are at liberty to use whatever from these standards they think is appropriate for them.
You would in any case want to augment these suggestions with house standards as needed.

The emphasis is on production use of MQSeries. Some educational or test environments may
be less rigorous in adhering to these standards, but they can use it as a base.

How this Document is Organized

The document is organized as follows:

Chapter 1, General Items

Provides a general introduction to these standards. There are some basic
recommendations that would apply throughout MQSeries included here. It
covers defaults as well as general naming standards.

Chapter 2, MQ Network Structure

The approach taken in this document is to discuss this topic separately from
applications. When MQSeries is deployed on a small scale, the boundaries
get blurred, and it is difficult to see them separately.

As the use of MQSeries grows, it can be useful to have considered this part of
the configuration separately, the collection of queue managers and the
connections between them. These components need have no specific
knowledge of the applications they support. They are able to support multiple
applications, or to run new applications without change.

Chapter 3, Applications

More generally, this chapter applies to any message processing element,
including applications, adapters, and message hubs. The general goal
behind these recommendations is to make “applications” transparent to
where they fit in the MQ network structure. They do depend on that structure
for message delivery, but the application specific configuration should not
have to depend on how that is done.

MQSeries - Standards and conventions

vii

Bibliography
The MQSeries family home page, http://www.software.ibm.com/ts/mqseries/

The following IBM manuals, shown below with their publication order number, can also be
viewed from the MQSeries web site.

� MQSeries: An Introduction to Messaging and Queuing, GC33-0805

� MQSeries Planning Guide, GC33-1349

� MQSeries Queue Manager Clusters, SC34-5349

� MQSeries Intercommunication, SC33-1872

� MQSeries Clients, GC33-1632

� MQSeries System Administration, SC33-1873

� MQSeries Command Reference, SC33-1369

� MQSeries Application Programming Guide, SC33-0807

� MQSeries Application Programming Reference, SC33-1673

� MQSeries Application Programming Reference Summary, SX33-6095

MQSeries - Standards and conventions

viii

Chapter 1. General Items
This document is intended for use by Management, Systems Administrators, Application
Developers, Standards Committees, and any others that will support MQSeries networks or
design MQSeries applications. It is designed to provide a common base from which all
MQSeries personnel can work.

Its intended benefits are as follows:

�Consistency in applications and administration processes

�Maximum availability of applications

�Avoiding common mistakes made by beginners

�Assistance to those in the early stages of becoming MQSeries experts

�General assurance of a smooth start for successful MQSeries projects

Acceptance and implementation of these standards is at your discretion. The
recommendations that follow have been built up to incorporate wide experience with
MQSeries. You may in any case want to augment these suggestions by adding house
standards as needed.

The emphasis is on production use of MQSeries. Some educational or test environments may
be less rigorous in adhering to these standards, but they can use it as a base

Administration

Identify the "MQA"

Successful users have identified an MQSeries Administrator, to keep control
of the running systems, including the use of any standards. (Some have
coined the term "MQA", inspired by the similar role of a "DBA".)

� You can have a single MQA; or there can be benefit in a small team,
dividing the responsibilities for mainframe and distributed for example. As
long as they work well together that can be successful.

� The MQAs need to have had appropriate MQSeries training; ideally the
MQA should be an IBM Certified Specialist in MQSeries.

Information about MQSeries education and the Certification program can
be found on the MQSeries web site.

� The MQA, or this small team, will also need to work in conjunction with
security and network administrators.

The main thing is that the role is identified. Do it sooner rather than
later.

Object Names

All MQSeries names follow the convention for MQSeries, rather than the standard for object
names on each supported platform. Object names may need to be used across platforms for
example.

1

Don't use lower case letters

MQSeries allows both upper and lower case letters in its names.

Remember, however, that MQSeries names are case-sensitive. This is apt to
be a common source of error. This is compounded because some tools fold
strings to upper case.

Don't use % in names

This character is valid in all MQSeries names, although it is not commonly
used in other names across platforms. (The property that determined which
characters were permitted is that no conversion is required between ASCII, or
between EBCDIC, code pages.)

Choose meaningful names, within the constraints of the standards

This should be fairly obvious; help the MQA.

There is no implied structure, or hierarchy, in the name, such as you might
find on many systems' file names. MQ just compares the strings.

These standards do recommend using hierarchical names in places; that is
because they can be more useful that way. In some cases there is a
recommendation for a suffix where there are multiple "versions" of an object.

Document the names

Remember users may be in different departments; using different platforms.

Always include a Description

All objects have a DESCR attribute for this purpose. MQSeries takes no
action on the value, but allows it to be viewed.

� The character set in the Description is not limited to those used to
construct MQSeries object names. Its purpose is to help the MQA. This
may in fact be more readable in mixed case, and it can include national
language, including DBCS, characters where appropriate.

Save the definitions

There are various reasons for doing this.

� In the case of a failure you may need to re-create the objects. This
requires you save the definitions separate from the queue manager.

� Even without a failure, it can be useful to reset the attributes to a known
state. For example if triggering has been turned off, or GET or PUT
disabled, it is helpful to be able to restore the objects to their initial state.

� It can supplement the documentation.

For example MQSC scripts, or CL programs on OS/400, would do; remember
to include the REPLACE option.

2

Defaults

Ideally leave defaults unchanged

MQSeries generally keeps attribute defaults in standard objects,
'SYSTEM.DEFAULT.*'. When an object is defined, MQ takes any unspecified
attributes from the corresponding default object.

The original intent of this approach was to support users who wanted to have
different defaults. The various platforms supply these defaults in different
ways.

� MQSeries for OS/390 provides a script which can serve as the
"Initialization Input Data Set" in the queue manager JCL.

� MQSeries for AS/400 provides a CL program, AMQSDEF4; the source is
in QMQMSAMP.

� Other systems have a supplied an MQSC script (AMQSCOMA), intended
to be run once after the queue manager is created. Version 5
implementations do not supply this set of commands though; the
standard default objects are created automatically when a queue
manager is created.

Accept the MQSeries defaults, unless there is a good reason to change them
- much care went into deciding what they should be.

If you must change defaults, use a Customization file

Don't change the supplied script, even though this was the original intended
purpose - you would lose changes if there is a subsequent product update.

In fact there are more compelling reasons. Most queue managers require all
attributes to be specified when DEFAULT objects are created. A modified
script would fail if a later product release introduced new attributes. Even
more compelling is that the Version 5 products do not even include a
command file that can be edited.

A better approach is to have a separate Customization file; use ALTER
commands to change just the attributes where the defaults are to be different.

� Concatenate with the Initialization Input Dataset on MVS

� Elsewhere, run the changes after the standard system defaults have been
created.

Use the Customization file for Queue Manager attributes

Some characteristics are configured when a queue manager is created, and
can not be changed after that. The following advice clearly does not apply to
those attributes that can not change.

Specifying other queue manager attributes in a Customization file, in addition
to being simpler, provides a direct way for all the values to be returned to a
known state.

3

� Example 1, on an MVS queue manager:

ALTER QMGR +

DESCR('Queue manager = MARS') +

DEADQ('SYSTEM.DEAD.LETTER.QUEUE')

� Example 2, on one of several AIX systems connected to that MVS queue
manager:

ALTER QMGR +

DESCR('Queue manager = JUPITER4') +

DEADQ('SYSTEM.DEAD.LETTER.QUEUE') +

DEFXMITQ('MARS')

Use templates for default classes

Remember that an alternative to system defaults is to use DEFINE LIKE;
objects are defined with reference to a known Defaults object, a template
object. Identify these clearly by using "TEMPLATE" as part of the name.

4

Chapter 2. MQ Network Structure
The approach taken in this document is to discuss this topic separately from applications.
When MQSeries is deployed on a small scale, the boundaries get blurred, and it is difficult to
see them separately.

As the use of MQSeries grows, it can be useful to have considered this part of the
configuration separately, the collection of queue managers and the connections between
them. These components need have no specific knowledge of the applications they support.
They are able to support multiple applications, or to run new applications without change.

Queue Managers

Assign unique names to production queue managers

This sounds obvious, but is often ignored - and it is a cause of problems.

A queue manager can be understood as a "container" for queues and related
objects. There is typically one per system, but you can usually define
additional queue managers.

� On a large system particularly, it may be useful to keep a test
environment separate, on the same system. Plan on setting up separate
queue managers for each of these separate environments.

� On systems that support fail over, a queue manager may be recovered
on a processor that normally has its own queue manager.

� Where applications are constrained, for example by MQ log writes,
multiple queue managers can be a way to increase capacity.

Queue Managers with the same name can be configured to exchange
messages - by using Queue Manager aliases. But this is strongly
discouraged. There are some examples where this can lead to ambiguity,
and thus messages being sent to the wrong queue manager.

� If ReplyToQMgr is left blank in the Message Descriptor, MQSeries inserts
the actual local Queue Manager name, not its alias.

� Dead Letter Queue messages identify the real Queue Manager, not any
alias.

Don't just copy documentation examples

This is a sure way to produce queue managers with duplicate names; like
CSQ1, neptune, etc. Instead, plan ahead the names of production queue
managers.

Keep the queue manager name short

On MVS it has to be - the queue manager name corresponds to the MVS
subsystem name. Hence the queue manager name is restricted to 4
characters. (It must be distinct from other subsystem names on the same
MVS, and some users have taken to calling their queue managers "MQ..".)
An alternative would be a convention such as the following.

5

� Example: ADDX

A = geographic area

DD = company division

X = distinguishing identifier

Elsewhere, although a longer name is allowed, a queue manager is
conventionally given a short name.

� There are not generally so many queue managers that this causes any
problem.

� Many queue managers use the first 8 characters when generating unique
message identifiers.

� MQSeries for Tandem NSK uses the first 7 characters as the root of
subvolume names.

� The naming convention for channels in this document incorporates the
connected queue manager names, and channel names are limited to 20
characters.

A typical choice would be to make it the same as the network host name.
Otherwise, try a convention similar to these examples illustrated below.

� Example: CCCDDFNN

CCC = city identifier

DD = company division

F = queue manager function (e.g. Test)

NN = numeric identifier

� Example: SSSCCFNN

SSS = stock ticker symbol

CC = city identifier

F = queue manager function

NN = numeric identifier

The numeric identifier in these examples could be appropriate where a
processor has multiple queue managers.

For a Queue Manager Alias, add a suffix to the name

The main use for this would be to support "classes of service". There are
fewer constraints on the length of an alias name; it could be more than 8 (or 4
on MVS) for example.

6

In fact this feature is usually related to defining multiple channels between a
pair of queue managers. In this case, use the same suffix for associated
channels and queue manager aliases. The limit on the length of channel
names suggests limiting this kind of suffix to 3 characters.

� Example 3, the AIX queue manager in Example 2 in topic 1.3 needs an
alias so it can receive very large reply messages on a separate channel.

DEFINE QREMOTE('JUPITER4_XL') REPLACE +

DESCR('Queue manager alias for very big messages') +

RQMNAME('JUPITER4')

Use the cluster name for a gateway alias

A new use of a queue manager alias is to define a cluster gateway, which
provides an external view of cluster queues, including dynamic workload
distribution. In this case, use the cluster name as the queue manager alias
name. Add a suffix if multiple gateways should be needed.) Applications and
configuration on queue managers outside the cluster can then use this name
as a “pseudo queue manager”, representing the entire cluster.

Default Queue Manager

Don't identify one Queue Manager as the default

Some environments can tolerate an exception, most notably CICS/ESA,
where any CICS region is always connected to a single Queue Manager.

Most platforms can have more than one queue manager defined on a system.
Don't pick one as the default; this is a common source of error, selecting the
wrong queue manager.

Even when there is only one queue manager configured, don't define it the
default. Doing so can make some operations a little easier, but it leaves open
the scope for errors if another queue manager should be added at a later
date.

Early versions of MQSeries for AS/400 were limited to one queue manager on
any system, so any queue manager was effectively a default one. Current
implementations allow multiple queue managers however. In the interests of
migration and general MQSeries consistency, try to avoid an assumption of a
default queue manager even here.

Pass the connection name as a program parameter

This allows a program to run unchanged on any appropriate Queue Manager.
Hence it could have multiple concurrent instances; or a queue driven service
could be moved to a different queue manager without affecting the code. The
mechanism for passing this data can be any suitable programming technique;
a system parameter might be an obvious choice, but including the name in a
file could be acceptable too.

Note that triggering would usually provide this information as part of the
MQTMC2 structure. There are a couple of exceptions.

7

� The supplied triggering functions for CICS/ESA and OS/400 do not
include a queue manager name in the parameter. Programs triggered in
CICS already has the queue manager identified, and early
implementations on AS/400 only allowed a single queue manager.

� Some compilers and systems restrict the length of system parameter they
can accept, and so exclude this part of the MQTMC2.

Storage Class

Name it to describe the function

There shouldn't be too many of these so a simple name is sufficient. If it is a
storage class for IMS Bridge queues, you could just call it "IMS" for example.

Consider application specific storage classes as a way to enable changes to
be made later.

Note that there is no value in including the fact that it's a storage class as part
of the name. They have a separate name space from other MQSeries
objects, and the fact they appear in this object list should be sufficient
indication.

Dead Letter Queue

If MQSeries can detect an error synchronously, it is reported directly to the application; if a
message can not be delivered after that it is a candidate for the Dead Letter Queue. This
preserves a message that can not be processed immediately, without stopping valid
messages in the meantime.

� The facility is available on all platforms except MQSeries for Windows V2.

� MQSeries for AS/400 documentation refers to it as the "undelivered-message" queue.

Although normally described as a channel function, there are other MQSeries components
that write to the Dead Letter Queue, including Trigger Monitors and the IMS Bridge.

Include a Dead Letter Queue on all queue managers

On all queue managers, use a local queue called
SYSTEM.DEAD.LETTER.QUEUE.

This is created automatically by some MQSeries platforms. On those
platforms that do not, create a queue with this same name; it will cause less
confusion to use a common name everywhere.

It is still necessary to configure the queue manager, by identifying this
queue in its DEADQ attribute.

If a Dead Letter Queue is required, and is not available, a channel will fail.

Some users have avoided defining a Dead Letter Queue in order to detect
errors sooner, but that is not recommended. The problem with this approach
is that one rogue message is sufficient to stop all messages across a
channel.

8

Consider ways to avoid unnecessary DLQ messages

Some platforms allow an automatic retry if a message can not be delivered
immediately. It is specified by parameters on a receiving channel, and the
conditions can be changed through a Retry Exit.

The channel is paused while such retry is in progress. Thus, transient errors
can be tried again to avoid messages being written to the Dead Letter Queue
unnecessarily.

A further possibility is for applications to specify MQRO_DISCARD as a
Report Option. Such a message would not be placed on the Dead Letter
Queue, but discarded instead. In fact this option would often be combined
with MQRO_EXCEPTION_WITH_FULL_DATA, so an undelivered message
would be returned to the Reply Queue, sometimes described as "return to
sender".

Process the undelivered messages

Messages that are put on the Dead Letter Queue take the form of the original
message data, preceded by a dead letter header - defined by the MQDLH
structure. The header includes the intended destination queue, and queue
manager, for the message, and the Reason it could not be delivered.

Listing the contents can be sufficient for a test system. A production
environment must have a process, triggered or scheduled at intervals, to
dispose of the messages appropriately. Some platforms supply a Dead Letter
Queue Handler (rules driven); otherwise you would need a program for this
purpose.

� Construct rules based on queue names, message type, feedback code,
etc. It can be appropriate in some cases to retry or discard certain
messages.

� Where no such action is appropriate, transfer the undelivered message to
an application queue for action there.

Channels

Clusters

Identify clusters for each environment

This is in line with having separate queue managers for development, test,
production, etc. Group queue managers for each of these separate
environments in separate clusters. Provide each cluster with a unique name
that describes its function (and environment); do not include “cluster” as part
of the name.

Naming convention for cluster channels

For cluster senders and receivers, name them TO.<destination>.

Transmission Queue

Use exactly the same name as the destination queue manager

9

MQSeries will select this name in the absence of other information. Note you
can not rely on there being a QREMOTE to define a transmission queue in all
cases. A notable example is a message to the Reply Queue, which will only
have a destination Queue Manager name from which to determine the
routing.

If messages are being sent from a non-cluster queue manager to a cluster
gateway, name the transmission queue exactly the same as the queue
manager alias used for that purpose.

� Example 4, the AIX queue manager in Example 2 in topic 1.3 needs a
transmission queue to access the MVS hub queue manager.

DEFINE QLOCAL('MARS') REPLACE +

DESCR('Transmission queue, sending to MARS') +

USAGE(XMITQ) TRIGGER +

INITQ('SYSTEM.CHANNEL.INITQ') +

TRIGDATA('JUPITER4/MARS')

If there is more than one channel, add a suffix

This is connected to the earlier standard for Queue Manager aliases, and
their association with classes of service. Note, the technique is to specify your
queue manager alias as the ReplyToQMgr; the remote system would thus
use that as the transmission queue for its reply.

Use the same suffix for a transmission queue and its destination Queue
Manager alias in this situation.

� Example 5, the same AIX queue manager has a separate channel to
receive very big messages.

DEFINE QLOCAL('MARS_XL') REPLACE +

DESCR('Transmission queue, big messages to MARS') +

USAGE(XMITQ) TRIGGER +

INITQ('SYSTEM.CHANNEL.INITQ') +

TRIGDATA('JUPITER4/MARS_XL')

Take care with Default transmission queue

This feature is not available on all platforms; where it is supported, it is a
convenient way to avoid having to define a transmission queue (and channel)
for all possible destinations.

It is particularly useful for end point nodes in an MQSeries network. It can also
be safe to use this facility for example when a branch office queue manager
sends messages through a headquarters hub system.

The configuration that must be avoided is a loop of default transmission
queues. MQSeries does not detect this situation, and continues to forward the
messages as directed.

10

Make triggering standard for a Sender channel

Configure its transmission queue for triggering.

� Always use trigger type FIRST, and TRIGMPRI(0).

� On Version 5 platforms, the corresponding channel name is specified as
Trigger Data. Elsewhere configure a Process object as documented.

� Use the supplied Initiation Queue name, 'SYSTEM.CHANNEL.INITQ'

Remember to have started the Channel Initiator.

A Requester channel is intended to initiate message transfer from the
destination system. Its corresponding Server channel does not therefore need
to be triggered.

Message Channels

Naming convention is <source>/<target>

<source> and <target> are the names of the communicating queue
managers. The MQSeries limit is 20 characters for this name.

Note that this is equivalent to <source>/<xmitq> if you follow the standard
naming for a transmission queue. Moreover, this correspondence can be
generalized to multiple channels, and <target> is then the receiving queue
manager alias. The previous examples illustrate channel names following this
convention.

The recommendation, in order for this generalization to work, is that the
channel, its transmission queue, and the destination queue manager alias, all
have the same suffix.

The same convention applies to dynamic channels, introduced in MQV5. If a
Sender channel is started, and the corresponding Receiver channel has not
been defined, the Receiver is created automatically.

Include the transport type if it adds value

Some users have found it unnecessary to include the transport type in the
naming convention for channels. If all you have is a TCP/IP network, it does
not really help to use the limited characters in all the channel names to say
so.

Other users though, particularly where a queue manager is in a mixed
network, have found it a useful suggestion to indicate the network protocol in
the naming convention. If this is needed, make the transport distinction
evident in the class of service suffix; for example 'MARS/JUPITER4_SNA'.

Client Connections

Don't create a channel for each separate client

In this case there is no source Queue Manager to construct the longer form.
Defining a separate channel for each client represents unnecessary effort.

11

Use the same name, 'CLIENTS', on all queue managers. Add a suffix to this
name if multiple connections have to be configured:

� A server which supports clients with multiple transport types, or different
classes of service.

� Setting up a single Channel Table to allow clients to attach to multiple
queue managers.

MQSeries for Windows V2

These queue managers have two types of object not found elsewhere, Channel Groups and
Connections. Since the names are not cross platform, there is less need to impose a system
wide standard. (There is less need to be rigorous about upper case too; the same user must
make them match either way.)

� For a Channel Group, name it to describe the function performed - that it is a dial up
group, or the channel group to access a particular application for example.

If the system has multiple queue managers, don't use duplicate channel group names on
the system.

� A Connection identifies a combination of a queue manager and (optionally) a channel
group. Name it the same as the Channel Group. If it is a Standalone connection use the
queue manager name.

12

Chapter 3. Applications
These recommendations assume a suitable MQSeries network, such as that described in the
previous chapter. The goal here is to make application code transparent to any configuration
changes.

More generally, this chapter applies to any message processing elements. Adapters and
business integration facilities take away some of the need for MQ programming, but often
have configuration options that would enable many of the following recommendations.

Queues

Names

Name a queue to describe its function

A message driven program provides some service. Naming a queue to
describe this service seems obvious; the converse, excluding unrelated
information from the name is less so.

Use hierarchical names for application queues

The form that is often recommended is as follows.

<application>.<function>

MQSeries uses the prefix 'SYSTEM.*' for objects it delivers; don't use this for
application related queues.

Using a prefix to group related queues simplifies some areas of MQSeries
administration. For example,

� inquiries about queues

� MVS security administration

� Dead Letter Queue handler

In a bigger application, it can be appropriate to adopt more levels in this
naming hierarchy. For example,

<system>.<application>.<function>.<sub-function>

In test environments, you could similarly consider making the high level
qualifier the User ID of the owner of a test queue.

Use an output alias for a destination queue

To facilitate redirection later, a good practice is to use the above convention
to name an application’s output queue, but to make that an alias of the real
queue. If the output is delivered to MQSeries Integrator, this application
related alias can be configured to point to the appropriate message broker
input queue.

Don't include the Queue Manager name

13

MQSeries generally identifies a queue by a pair of names, the queue name
itself and the containing queue manager. Including the queue manager as
part of a queue name is at least superfluous then.

If a queue is moved, a new queue manager name must be identified, but
there is no need to change the queue name as well. Where MQSeries
supports a directory function, applications would see no change at all.

Where an application is rolled out over multiple nodes there is no need to
invent a new queue name for each instance.

Don't include the queue type in the name

MQSeries administration makes queue types transparent to applications.
Don't make the type visible in the queue name; if the type is changed later,
the queue name does not have to be changed as well.

Pass the name of the input queue by parameter

Each service needs a QLOCAL to provide its input. Generalize the application
code by passing the queue name as parameter. Multiple instances of a
service can use different local queues, without having to change the code.

Note that programs that are triggered will meet this condition; the local queue
name is part of the trigger parameter.

Consider including program logic to test whether its parameter is really a
trigger message structure, or something that might have been passed from
the system environment. This would support a program that could be invoked
either by triggering or by command line.

Versions

Indicate a version by a suffix to local queue name

There may be occasions when multiple versions of a queue exist at the same
time. The reason may be related to different versions of the function driven by
the queue; or the application may assign a different local queue for certain
time intervals.

Indicate the version in the form of a suffix on a local queue name. For
example,

<application>.<function>_TEST

<application>.<function>_V2.1

<application>.<function>_THURSDAY

A queue name as a parameter will ensure the application code is transparent
to this.

Use aliasing to PUT messages to the right version

This is particularly useful where a message is PUT to a queue to request a
service. The choice of the correct version of the local queue should not be the
responsibility of the requesting program.

14

Use the same queue name across all platforms to PUT messages.

� Define it as QALIAS or QREMOTE as appropriate; don't include the
queue type in the name.

� If you have a Directory service, use a QALIAS with SCOPE(CELL)
instead.

Don't include the version suffix in this alias name. When the time comes to
start using a new version of the local queue, just change these alias
definitions. Programs will not need to be changed when the version changes
in this way.

Note that there is an additional use on MVS for using aliasing in this way - it
enables RACF permissions for GET and PUT to be separated.

Reply Queue

Naming convention <application>.REPLY

This fits in with the hierarchy convention described above.

Specifically don't include the queue type, QM or QL, since this is an aspect of
the configuration that could be varied, such as for performance tuning.

An Alias could be also used, for example if a shared reply queue has multiple
versions. Note that MQSeries will have resolved this to the correct local
queue in any Message Descriptor that is sent.

Options for Reply Queue type

There are various application approaches to processing a reply queue which
imply different queue types. The naming conventions above works in each
case, though there are different considerations in each case. Where choices
can be made through configuration, consider writing the program logic so that
it is transparent to this tuning.

Exclusive

The fixed name is usually a Model Queue, opened to INPUT the replies;
the generated Dynamic queue is specified as the MQMD.ReplyToQ. As a
temporary dynamic queue it would be appropriate for replies to
non-persistent requests. All replies belong exclusively to the requesting
program, and the queue is deleted when it is closed.

In fact a similar program could also work when the reply queue is local,
and opened for Exclusive Input; persistent messages could then be
included.

Shared

Getting reply messages (selecting by CorrelId) from a shared local queue
can have a performance advantage - certainly in avoiding the overhead of
creating a new dynamic queue each time, but often in general message
retrieval as well.

15

This of course requires each request to have been sent with a unique
MessageId, and any intermediate server programs to process the Report
options properly.

Note the design consideration in this case, that replies received after the
requesting program has finished can remain unnoticed on the reply
queue. Use of a shared reply queue in this way would need to have
designed a convenient way to remove replies that are no longer wanted.

Class of service

A Reply Queue Alias would typically be specified in the Message
Descriptor, and thus allow a class of service for replies to be determined
by configuration instead of coding an explicit Reply Queue Manager.

Note that this name can not be opened for INPUT though; you would
need the resolved name for that.

Asynchronous

Handling replies in a separate process from requests is less simple for
the application, but its uses can be more general.

� Consider triggering the reply queue process.

� This approach works well with a permanent dynamic queue too. The
queue that follows the naming convention is the model queue.

A permanent dynamic queue should be deleted when all its
messages have been processed, but it can remain in existence due
to a failure. Consider specifying a Retention Interval. It can be used,
in combination with Creation date and time, to highlight a dynamic
queue which had not been deleted in a reasonable time. It would still
need some administration process to remove such unwanted queues.

Design for old replies

These occur when a requesting program has a time limit to wait for a reply
message. If a reply arrives after that time, the application must be designed
so that such messages are either discarded or processed later.

Dynamic Queues

When MQSeries creates a dynamic queue, the first part of the resulting queue name can be
controlled through the Object Descriptor. The appropriate name standard depends on the type
of dynamic queue created.

Temporary - accept the MQSeries default

The MQSeries default for a dynamic queue prefix is 'CSQ.*' on MVS, 'AMQ.*'
on other systems. Since temporary dynamic queues are deleted on
MQCLOSE, they will not have to be controlled by the MQA; so leave the
default unchanged.

Permanent - supply an application prefix

A permanent dynamic queue can remain across application invocations. It
may need to be managed by an MQA, so ensure the queue follows the

16

hierarchical naming convention. Specify an application prefix in
MQOD.DynamicQName, followed by an asterisk.

Note that this application prefix must not exceed 32 characters, in order that
MQSeries may generate a unique name with the remaining characters.

Queues for Bridges and Links

Include the bridge or link type in the application hierarchy

For example,

<application>.IMS

<application>.CICS

<application>.R/3

Namelists

Use a hierarchical name as before

Don't indicate in the name that it is a Namelist; they have a separate name
space, and so the fact that they are Namelists is completely clear from the
context.

Triggering

You do not need to have triggering in all cases. For example a program could instead be
scheduled in other ways - for example on demand, at a time of day, or as part of the system
start.

Programs

Write programs to recognize whether they have been triggered

This recommendation applies even if the immediate intent is to schedule a
program without triggering. It requires little extra code, and gives the
application an ability to be scheduled differently in the future, without having to
revisit the program logic.

� A program initially written to be invoked from the command line can
subsequently be configured for triggering.

� A function designed for an automated set of application processes can be
invoked as a stand-alone task.

Remember that triggered programs must tolerate finding an empty queue;
there are conditions that generate an extra trigger message rather than risk
missing a trigger.

A tip to avoid timing problems, particularly when using groups and segmented
messages, is to specify a longer Wait Interval for the initial MQGET in a
triggered program.

17

Process

If a queue has its own Process, use the same name as the queue

Include the version suffix if the queue has one; there may in any case be a
separate executable for each instance of the queue.

Note that Processes have an independent name space. Hence there is no
value including the fact it is a PROCESS as part of the name.

If a Process is shared, describe the collective function

Where several queues are handled by a common program, define a single
Process object. Use a suitable hierarchical name for the collective function.

If multiple versions of a queue are read by the same program, just drop the
version suffix from the queue name.

Use Environment Data as a parameter to the trigger monitor

This particularly applies if writing your own Trigger Monitor.

User Data was intended to be used as parameter information to the triggered
program; Trigger Data similarly provides a parameter that is specific to one
queue.

All fields are passed to the program in any case, but the original intent for the
separate Environment Data was that it could be a parameter to control the
function of a trigger monitor.

Some supplied trigger monitors do not use this information. On OS/400 it can
be used for example to select a job priority, or CICS region, for the task that
gets run. On UNIX, a value of '&' causes the program to be triggered as an
asynchronous process.

Initiation Queue

Use system defined queues for simple general triggering

Some platforms define standard initiation queues when a queue manager is
created. These are the defaults for supplied trigger monitors. For example,

SYSTEM.DEFAULT.INITIATION.QUEUE

SYSTEM.CICS.INITIATION.QUEUE

Where these are created, and triggering requirements are simple, the best
approach is to use the supplied initiation queue.

Otherwise, use a hierarchical name

A reasonable approach may be to have an initiation queue for the various
functions in an application. Then use a name of the form,

18

<application>.INITQ

Hint - to stop any trigger monitor, disable GET for its INITQ

Trigger monitors are designed to be long running. They will stop when
MQSeries or the systems ends; or the trigger monitor task can be canceled
by an operator.

MQSeries for MVS/ESA provides an interface to stop its CICS Task Initiator
function cleanly, without disrupting other operations. A more general way to
close a trigger monitor, in any environment, would be to disable GET on the
Initiation Queue; it works where trigger monitors allow shared input too.

Trigger Control

For temporary disabling use NOTRIGGER

This was the intent of this parameter, when there is an application need to
suspend triggering temporarily. (Compare this with the operation of STOP
CHANNEL for example.) Use trigger type NONE for a queue that must never
be triggered.

An alternative method is to disable GET for the queue. This can also be
used to stop applications already running. (You can not use this method on
early implementations where this was not a condition for triggering.)

Avoid trigger type DEPTH

The original intent of this feature was to support consolidation of replies to
related parallel requests. The reply queue for the set of related messages
would be a permanent dynamic queue, triggered when all the replies had
arrived.

The main problem is that this type of triggering is disabled when the trigger
occurs. There is no automatic re-triggering if all the messages are not
processed. This simple approach does not cater for cases where replies are
incomplete within a time limit.

If the requirement is to defer message processing until the numbers make it
more economical, an alternative is to use the system to schedule a task at
intervals, and to process all messages that have accumulated at that point.

Never use trigger type DEPTH to monitor a queue threshold. The correct way
to do that is using Performance Event messages.

Avoid trigger type EVERY

This might appear suitable for triggering transactions that each process just
one message. The design was not originally in response to any known user
requirement.

The problem occurs when the system is restarted and there are several
messages recovered on a queue. Only one trigger is generated no matter
how many messages are on the queue.

A preferred approach is trigger type FIRST, and write applications to continue
processing more messages.

19

If a transaction really must process only one message, trigger type FIRST is
still easier to get right. At least it would leave no messages untriggered,
because closing a queue with any remaining messages results in another
trigger.

Achieve parallel execution if needed through a user written trigger monitor; or
have multiple queues.

Take care with groups and segmented messages

MQSeries Version 5 introduced Groups and Segments, and there are options
on MQGET to wait for a complete collection of physical messages.

Triggering is still based on physical messages though. An application would
be triggered when the first physical message arrives, but may find no
messages available if using these new options.

You may need to wait longer when an application expects a complete group
or logical message. This would be needed to avoid a triggering loop.

Programming Conventions

Accept queue manager and input queue name as parameters

As explained earlier, it enables a program or transaction to be run
unchanged, and take input from any queue, and on any appropriate queue
manager.

Test for Completion and Reason Codes

The purpose of having separate return values is that Completion Code offers
a simple test of whether the MQI call worked at all; Reason Code gives the
specific cause.

Test for any reasonably anticipated Reason Codes. Avoid displaying
“MQSeries” in an operator message unless MQSeries is the likely cause of
failure, and would need the attention of MQ staff.

Report any other reasons as a number. (Additionally, a text version of
general reason codes is available through SupportPac MS09: MQSeries
return and reason code analyzer.)

Similarly, when processing a Reply Queue, check for Report Messages; treat
the MQMD Feedback values in the same way as Reason Codes.

Detect the condition of a queue manager quiescing

The purpose of a quiesce mode of stopping a queue manager is to allow
applications to end cleanly. The application responsibility is to detect when a
queue manager is stopping, and to disconnect within a reasonable time.
(Stopping within five minutes is generally considered acceptable.)

20

� Request FAIL_IF_QUIESCING where MQI provides this option. Always
use this when MQGET has the WAIT option.

The exception is when using MQI to finish a transaction already in
progress. Specify MQGMO_FAIL_IF_QUIESCING on the MQGET which
starts a new transaction; then omit the option on further MQI calls needed
to complete the unit of work.

� Avoid long spells when a connected application does not call MQ (for long
computation, or an indefinite user wait), and can not detect a stopping
queue manager. Consider disconnecting the queue manager if
necessary - to keep the application well-behaved, even at the expense of
a subsequent reconnection.

Avoid repeated MQCONN and MQOPEN

Most MQSeries implementations particularly optimize the performance of
MQGET and MQPUT where possible by having work done in the earlier calls.
It is therefore more efficient to issue MQCONN and MQOPEN, and then use
the resulting handles to process several messages where possible.

Take particular care when MQI calls are grouped to form a higher level
function. Some user implementations of such functions have led to repeated
MQCONN or MQOPEN.

Recent developments have improved the speed of MQCONN and MQOPEN,
and so make this recommendation less necessary on some platforms. Even
so, it remains good practice in general.

Generally use MQCONN

Most environments require an MQCONN call anyway. If MQCONN is called
from an environment that is already connected, like CICS/ESA or a program
called synchronously in the same process, MQCONN will complete quickly. It
returns the connection handle that already exists, and a Reason Code of
MQRC_ALREADY_CONNECTED. Hence its use can be appropriate in all
environments.

MQSeries for AS/400 performs an implicit MQCONN whenever MQOPEN is
called without having first connected to the queue manager. In this case there
is an implicit MQDISC when the last, or only, queue is closed. This can result
in multiple MQCONNs in a program.

Use CCTMQM in an interactive environment, or for CL programs that invoke
MQSeries commands. This establishes an MQSeries connection, and so
precludes an overhead for repeated implicit MQCONN in that environment.

Use default priority for a new message

The intended basic convention for a new message, like a Request, was to
use the queue defaults for persistence and priority. This would allow tuning to
be performed readily in the queue configuration, rather than in the program;
Alias queues could be used for messages of differing characteristics.

This is sound advice for Priority, but not for Persistence. An application
would generally know whether the messages it originates need to be
persistent, so an explicit MQMD option is quite reasonable. On the other hand

21

there have been reported cases of lost messages, where remote queue
definitions had incorrectly specified DEFPSIST(NO).

Select the Report Options required

The default is that MQSeries does not send a Report message to indicate an
asynchronous exception. If any Report Option is specified (or the message is
a Request):

� Specify a Reply Queue in the Message Descriptor

� Specify MQPMO_NEW_MSG_ID (or clear the Message ID), so that
MQSeries generates a unique identifier for the message.

Always specify MQMD.Format

Even where not immediately needed, there is no harm in doing this. The
default is that the message format is undefined to MQSeries. That could
prevent a future need for message data conversion, and can cause some
applications to fail.

Where a message is transformed, for example by MQSeries Integrator,
remember to specify the MQMD.Format to correspond to the new output.

The associated representation fields are usually safe to leave as the default.
An exception is where applications operate using a different CCSID from the
queue manager, and must therefore specify the correct value in the Message
Descriptor. Take care with certain workstation COBOL implementations that
offer an option of using mainframe or workstation data representation.

Generally specify CONVERT on MQGET

This is the preferred way to perform a basic message conversion, like
character strings, between disparate platforms. The message is converted
only if necessary, and at most once. It also applies when MQGET is
performed by an MQ-client.

A message whose conversion fails sets the MQMD Encoding and CCSID to
the actual unconverted representation. Therefore reset these values before
each MQGET.

(Tools like MQSeries Integrator provide for more complex data
transformation, but that is separate from this consideration.)

Take care with unlimited GET WAIT

This is necessary with certain long running programs, like Trigger Monitors.
For most applications it would be better to set some time limit; then take
some other action, or close down and wait to be triggered when a message
does arrive.

Removing a bad message

This is a common design question. A unit of work is driven by an input
message but subsequently fails. Actions already performed should not be
committed; but rolling back the transaction would leave the message

22

remaining on the input queue, and prevents an error response being MQPUT
under syncpoint.

MQSeries for OS/390 provides an MQGMO_MARK_SKIP_BACKOUT facility.
It is the ideal way to program for this case. The more general technique,
requiring multiple MQGETs but available across platforms, involves testing
the Backout Count on any message retrieved.

Allow for bigger messages

A common error is to make incorrect assumptions about the required buffer
size. The arrival of a production message bigger than any tested then causes
an application error.

� If the application processes messages of a limited size, the simplest
approach is to specify the Accept Truncated Message option to remove
bigger messages put on the queue in error.

� An application that processes messages of variable size should not use
this option as a rule. A message too big for the supplied buffer thus
remains on the queue, and MQGET returns the required Data Length.
The program needs to be prepared to re-allocate a larger buffer, up to a
reasonable limit, and then do the MQGET again.

� The arrival of over-sized messages in a queue can be prevented by using
the Maximum Message Length attribute of the queue. Changing this
attribute does not affect messages already on the queue though, so using
this value to determine a buffer size would not entirely remove the need
for an application to allow for bigger messages.

Don't assume a fixed output queue to send results

An initial implementation may involve communication between just two
programs. For example A sends a request to B; B replies to A.

Rather than sending the reply to a fixed queue name, make the program
more general by sending the result to the Reply Queue instead. Similarly don't
assume the reply is local, but at the Reply Queue Manager.

Reply with like characteristics

There are several conventions when replying to a message.

� Generally reply with like characteristics such as persistence or priority.
(Consider using the same MQMD for input and reply for example.)

� When passing context, specify Pass All Context if a message is
forwarded unchanged; Pass Identity Context if the reply is the result of
some processing.

� Process Message ID and Correlation ID as specified in the Report
Options. Don't assume the standard convention - copy Message ID to
Correlation ID, and request new Message ID. The Report Options are
generally removed for the reply message.

� Where the request was sent with an Expiry value, it would be received, if
not already expired, with an Expiry value which represents the amount of

23

unexpired time remaining. A Reply with "like characteristics" would
therefore imply a response message with an Expiry value.

A design consideration is whether this is appropriate for the application.
An alternative convention, when a message has been processed, is to
send the reply with Unlimited Expiry instead. This is the convention used
when MQSeries sends Report messages.

If, instead of a Reply, the message is to be transferred to another queue,
forward it with the Expiry value that was read - it will be either Unlimited,
or the amount of unexpired time.

Avoid long-running units of work

Performance can be degraded as the duration of a unit of work becomes
longer; and keeping them short allows a queue manager to quiesce faster.

Make MQDISC conditional

This is related to the earlier convention of including MQCONN. Call MQDISC
before ending the program, but not if MQCONN had earlier returned with
Reason Code MQRC_ALREADY_CONNECTED. This approach is
appropriate in all environments.

24

------------------------ End of Document -----------------------------

25

